Variation des espaces de modules de faisceaux semistables sur les variétés de dimension supérieure

Date/heure
18 mai 2015
14:00 - 15:00

Oratrice ou orateur
Matei Toma

Catégorie d'évènement
Séminaire de géométrie complexe


Résumé

Gieseker et Maruyama ont construit des espaces de modules de faisceaux semistables au dessus des variétés projectives polarisées de dimension supérieure a un. Le changement de la polarisation entraine en général une variation des espaces de modules correspondants, variation qui a été l’objet d’études approfondies en dimension deux. La poursuite de ces études en dimension supérieure s’est heurtée a l’apparition de façon essentielle des polarisations irrationnelles pour lesquelles même une construction des espaces de modules n’était pas disponible. Dans cet exposé nous présentons un travail en commun avec Daniel Greb et Julius Ross, dans lequel nous introduisons et étudions une nouvelle notion de stabilité qui nous permet de résoudre ces problèmes de construction et de variation au moins en dimension trois. Les nouveaux espaces de modules apparaissent comme des sous-schémas des espaces de modules de représentations de carquois.