Modèles individu-centrés en dynamique adaptative, comportement asymptotique et équation canonique : le cas des mutations petites et fréquentes.

Date/heure
21 septembre 2023
10:45 - 11:45

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Vincent Hass (IECL)

Catégorie d'évènement
Groupe de travail Probabilités et Statistique


Résumé

Le premier groupe de travail, un peu plus tôt que d’habitude. Voici le résumé.

La théorie des dynamiques adaptatives est une branche de la biologie de l’évolution qui étudie les liens entre écologie et évolution. Les hypothèses biologiques qui définissent son cadre sont celles de mutations rares et petites et de grande population asexuée. Les modèles de dynamiques adaptatives décrivent la population au niveau des individus, lesquels sont caractérisés par leurs phénotypes, et visent à étudier l’influence des mécanismes d’hérédité, de mutation et de sélection sur l’évolution à long terme de la population. Le succès de cette théorie vient notamment de sa capacité à fournir une description de l’évolution à long terme du phénotype dominant dans la population comme solution de « l’Equation Canonique des Dynamiques Adaptatives » dirigée par un gradient de fitness, où la  fitness décrit la possibilité d’invasions mutantes, et est construite à partir de paramètres écologiques.
Deux approches mathématiques principales portant sur l’équation canonique ont été développées à ce jour: une approche basée sur des EDP et une approche stochastique. Malgré son succès, l’approche stochastique est critiquée par des biologistes puisqu’elle est basée sur une hypothèse non-réaliste de mutations trop rares.
Le but est de corriger cette controverse biologique en proposant des modèles probabilistes plus réalistes. Plus précisément, le but est de s’intéresser mathématiquement, sous une double asymptotique de grande population et de petites mutations, aux conséquences d’une nouvelle hypothèse biologique de mutations fréquentes sur l’équation canonique. Il s’agit de déterminer, à partir d’un modèle stochastique individu-centré, le comportement en temps long du trait phénotypique moyen de la population. La question que l’on se pose se reformule en une analyse asymptotique lent-rapide agissant sur deux échelles de temps éco-évolutives. Une échelle lente correspondant à la dynamique du trait moyen et une rapide correspondant à la dynamique d’évolution de la distribution recentrée et dilatée des traits.
Cette analyse asymptotique lent-rapide repose sur des techniques de moyennisation. Cette méthode requiert d’identifier et de caractériser le comportement asymptotique de la composante rapide et que cette dernière possède des propriétés d’ergodicité. Plus précisément, le comportement en temps long de la composante rapide est non-classique et correspond à celui d’une diffusion à valeurs mesures originale qui s’interprète comme un processus de Fleming-Viot recentré que l’on caractérise comme l’unique solution d’un certain problème de martingale. Une partie de ces résultats repose sur une relation de dualité portant sur ce processus non-classique et nécessite des conditions de moments sur les données initiales. Au moyen de techniques de couplage et de la correspondance entre les processus particulaires de Moran et les généalogies de Kingman, on établit que le processus de Fleming-Viot recentré satisfait une propriété d’ergodicité avec résultat de convergence exponentielle en variation totale.
La mise en oeuvre des méthodes de moyennisation, inspirée par Kurtz, est fondée sur des arguments de compacité-unicité. L’idée consiste à prouver la compacité des lois du couple constitué de la composante lente et de la mesure d’occupation de la composante rapide puis d’établir un problème de martingale pour tous points d’accumulation de la famille des lois de ce couple. La dernière étape consiste à identifier ces points d’accumulation. Cette méthode requiert notamment l’introduction de temps d’arrêt pour contrôler les moments de la composante rapide et de prouver qu’ils tendent vers l’infini à l’aide d’arguments de grandes déviations, de réduire le problème posé initialement sur la droite réelle au cas du tore afin de prouver la compacité, d’identifier la limite de la composante rapide en adaptant un argument basé sur la dualité de Dawson, d’identifier la limite de la composante lente puis de passer du tore à la droite réelle.