Date/heure
24 juin 2025
10:45 - 11:45
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Xavier Lamy (Université de Toulouse)
Catégorie d'évènement Séminaire Équations aux Derivées Partielles et Applications (Nancy)
Résumé
Je présenterai un travail en collaboration avec Thibault Lacombe, où
nous démontrons que les solutions Lipschitz $u$ de $\mathrm{div}\,
G(\nabla u)=0$ dans un domaine du plan sont $C^1$, pour des champs de
vecteurs strictement monotones $G$ dans $C^0(\mathbb R^2;\mathbb R^2)$
satisfaisant une condition d’ellipticité très générale. Lorsque le champ
de vecteurs $G$ est le gradient d’une fonction strictement convexe,
notre résultat généralise des résultats de De Silva et Savin (Duke Math.
J. 2010). Lorsque $G$ n’est pas un gradient, l’hypothèse d’ellipticité
doit être interprétée correctement, et nous produisons un exemple qui
montre l’effet non trivial de la partie antisymétrique de $\nabla G$.