Seminars

The main seminars take place on Monday at the following times:

  • Seminar of differential geometry: 14 pm-15 pm
  • Complex geometry seminar: 15:30 pm -16:30 pm

The persons in charge are Damian Brotbeck for complex geometry and Benoit Daniel for differential geometry.


Upcoming presentation

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 February 2026 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anthony Genevois Résumé :
Titre de la première partie : Une introduction à la théorie géométrique des groupes
Résumé : L’idée centrale de la théorie géométrique des groupes est que, si un groupe agit sur un espace métrique par isométries, alors il y a des chances pour que des connections profondes existent entre les propriétés algébriques du groupe et les propriétés géométriques de l’espace. Dans un premier temps, j’illustrerai cette idée à travers plusieurs exemples de géométries qui se sont avérées particulièrement utiles au fil des années. Ensuite, j’expliquerai comment cette perspective géométrique sur la théorie des groupes mène naturellement à la notion de quasi-isométrie. Après une discussion générale, je me dirigerai petit à petit vers une famille particulière d’espaces, celle des allumeurs de réverbères.

 

Titre de la seconde partie : Géométrie à grande échelle des allumeurs de réverbères
Résumé : Grossièrement, un graphe d’allumeurs de réverbères est un graphe qui encode les différents états possibles d’un allumeur qui se déplace sur un graphe X donné et qui allume ou éteint des réverbères situés aux sommets de X. Dans cet exposé, on s’intéressera à la question suivante : quand deux graphes d’allumeur de réverbères ont-ils la même géométrie à grande échelle ? Après une discussion générale, j’expliquerai comment des idées de topologie élémentaire, notamment la notion de point de coupure locale, permettent de répondre partiellement à cette question.

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 9 February 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laurent Hauswirth Résumé :

TBA

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 16 February 2026 15:30-16:30 Lieu : Oratrice ou orateur : Maxence Phalempin Résumé :

Groupe de travail de Géométrie - Variétés kählériennes compactes uniréglées VIII

Catégorie d'évènement : Géométrie Date/heure : 20 February 2026 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoît Cadorel Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 March 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire géométrie complexe et groupes algébriques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 9 March 2026 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Robynn Corvelyn Résumé :

titres et résumés à venir


séminaire groupes algébriques et géométrie complexe

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 30 March 2026 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Luca Francone Résumé :

titres et résumés à venir


Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 30 March 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hiba Bibi Résumé :

Séminaire groupes algébriques et géométrie complexe

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 27 April 2026 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anis Zidani Résumé :

titres et résumés à venir


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 4 May 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 1 June 2026 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Fulvio Gesmondo Résumé :

Geometric methods in computational complexity


Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 15 June 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Erwann Delay Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 July 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Past presentation

Geodesic flow on the modular surface and Diophantine approximation

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 27 May 2014 14:00-15:00 Lieu : Oratrice ou orateur : S.G. Dani Résumé :

We discuss the interrelation between the asymptotic behavior of the trajectories of the geodesic flow associated with the modular surface and Diophantine properties of the points at infinity corresponding to the trajectory. Using the correspondence we give estimates for the number of solutions for certain quadratic inequalities in terms of the Hurwitz continued fraction expansions of the slopes of their linear factors.


Dégénérescences de transformations de Cremona du plan

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 26 May 2014 15:00-15:00 Lieu : Oratrice ou orateur : Jérémy Blanc Résumé :

Je présenterai le groupe des transformations de Cremona du plan et la topologie naturelle qu’on peut mettre sur celui-ci. L’ensemble des applications de degré borné est fermé et la question naturelle qui survient est de déterminer quelles applications de petit degré sont limites de celles de plus haut degré. Je donnerai quelques réponses à  ces question. Travail en commun avec Alberto Calabri.


Introduction aux courants

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 20 May 2014 15:30-16:30 Lieu : Oratrice ou orateur : Jean-François Grosjean Résumé :

Introduction pour quelques exposés de type groupe de travail sur les courants. Le livre de Morgan “Geometric Measure Theory, a beginner’s guide” sera la référence.


Equations critiques de Hardy-Sobolev pertubées

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 20 May 2014 14:00-15:00 Lieu : Oratrice ou orateur : Hassan Jaber Résumé :

Dans cet exposé, j’expliquerai l’influence de la géométrie sur l’existence des solutions pour les équations de Hardy-Sobolev perturbées. Plus précisément, on considère $(M,g)$ est une variété Riemannienne compacte et sans bord de dimension $n > 2$, $x_0$ un point singulier naturel et fixe de $M$.  L’équation de Hardy-Sobolev non perturbée est la suivante : (Eq-H-S) $Delta_g u + au = u^{2*(s)-1} / d_g(x,x_0)^s$ avec $s in ]0,2[, 2*(s)$ est l’exposant critique de Hardy-Sobolev, $Delta_g$ est l’opérateur de Beltrami-Laplace. */ Si $n > 3$ alors, par minimisation, il existe une solution de (Eq-H-S) quand le potentiel a est en dessous de la courbure scalaire en $x_0$. */ Si $n=3$ alors il existe une solution de (Eq-H-S) quand la masse de la variété en $x_0$ est strictement positive.   Dans le cas d’une équationÂ à  terme perturbatif sous-critique,  l’existence d’une solution d’ependra uniquement de la perturbation pour les grandes dimensions et qu’une interaction entre la géométrie globale de la variété et la perturbation apparaîtra en dimension 3.


Groupes de surfaces non archimédiens, immeubles et $A_2$-complexes.

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 13 May 2014 14:00-15:00 Lieu : Oratrice ou orateur : Anne Parreau Résumé :

Dans cet exposé, on s’interessera aux représentations du groupe fondamental d’une surface $S$ dans PGL(3) sur un corps valué ultramétrique, agissant sur l’immeuble affine $X$ associé.  On montrera que, dans le cas o๠$S$ a un bord, sous des conditions simples sur les coordonnées de décalage de Thurston-Penner-Fock-Goncharov, l’action préserve un sous-complexe dans $X$, cocompact et faiblement convexe, qui est par morceaux un arbre ou une surface.  En particulier on associe à  ces représentations une famille de $A_2$-complexes finis, analogues aux surfaces de translation et semi-translation mais avec holonomie dans $mathbb{Z}/3mathbb{Z}$, permettant notamment de calculer le spectre de longueurs / valeurs propres.  Cela permet de décrire explicitement une large famille de dégénérescences de structures projectives convexes sur la surface $S$.


Théorie de Nevanlinna et rationnalité des surfaces

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 14 April 2014 15:30-16:00 Lieu : Oratrice ou orateur : Jörg Winkelmann Résumé :

Formes différentielles symétriques et variations de structures de Hodge

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 14 April 2014 14:00-15:00 Lieu : Oratrice ou orateur : Yohan Brunebarbe Résumé :

Soit $D$ un diviseur à  croisements normaux simples dans une variété kählérienne compacte $X$. Dans mon exposé j’expliquerai pourquoi l’existence sur $X-D$ d’une variation de structures de Hodge polarisées avec structure entière force l’existence d’une forme différentielle symétrique logarithmique non triviale, i.e. une section non nulle du faisceau $S^{>0}Omega^1(log D)$.
Le cas compact ($D = emptyset$) était l’un des résultats principaux d’un travail en commun avec Bruno Klingler et Burt Totaro. La preuve dans le cas général dépend fortement de la construction d’un foncteur “cycles proches” global dans une catégorie adéquate.
Comme application immédiate, on obtient de nouvelles restrictions pour les variétés qui supportent une famille non isotriviale de variétés polarisées qui vérifient un théorème de Torelli infinitésimal.


Questions de la théorie géométrique des groupes.

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 8 April 2014 14:00-15:00 Lieu : Oratrice ou orateur : Valentin Poenaru Résumé :

L’exposé portera sur des propriétés asymptotiques des groupes de présentation finie. En particulier, il y a une telle propriété, que j’expliquerai, la QSF; elle est liée à  la simple connexité à  l’infini, à  la simple connexité géométrique et aux variétés de dimension trois. J’ai développé un programme pour montrer qu’elle est universelle pour tous les groupes de présentation finie. Ceci est lié, entre autres choses, aux travaux de Gromov et de G.Perelman. Aucune connaissance technique particulière ne sera nécessaire pour suivre l’exposé. Je vais tout définir et expliquer, aussi, le cadre historique du sujet.


Résultats de semi-continuité pour la dimension algébrique de variétés complexes compactes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 7 April 2014 14:00-15:00 Lieu : Oratrice ou orateur : Daniel Barlet Résumé :

La question suivante est classique en Géométrie complexe depuis fort longtemps : Soit $(X_t)$ , $t$ décrivant un disque $D$ de centre $0$, une famille holomorphe de variétés complexes compactes telle que pour t différent de $0$ la variété $X_t$ soit projective. Alors $X_0$ est-elle biméromorphe à  une variété projective ? Dans le cas o๠l’on suppose $X_0$ kahlérienne,la solution est simple. Sans hypothèse supplémentaire elle est encore ouverte à  ce jour. Dans un article aux Invent. Math. de l’an passé, Dan Popovici résoud cette question dans deux cas intéressants (donc avec des hypothèses supplémentaires assez faibles). Nous expliquerons comment l’utilisation de l’espace des cycles relatifs de codimension 1 de la famille considérée permet de généraliser notablement les résultats présentés dans cet article.


Finite rank vector bundles on ind-varieties

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 31 March 2014 14:00-15:00 Lieu : Oratrice ou orateur : Ivan Penkov Résumé :

In this talk I will recall a theorem by Barth, Van de Ven, Tyurin and Sato claiming that a finite rank vector bundle on the infinite complex projective space $P^{infty}$ is isomorphic to a direct sum of line bundles. Then I will describe sufficient conditions on a locally closed ind-variety which ensure that the same result holds on $X$. I will also exhibit natural classes of linear locally complete ind-varieties which satisfy these sufficient conditions.


50 51 52 53 54 55 56 57