Faculté des Sciences et Technologies
IECL – Site de Nancy
Faculté des sciences et Technologies
Campus, Boulevard des Aiguillettes
54506 Vandœuvre-lès-Nancy
59. Mihai Pavel, Matei Toma
Slope-semistability and moduli of coherent sheaves: a survey
58. Mihai Pavel, Matei Toma
Moduli spaces of slope-semistable sheaves with reflexive Seshadri graduations
57. Mihai Pavel, Julius Ross, Matei Toma
Uniform boundedness of semistable pure sheaves on projective manifolds
56. Damien Mégy, Mihai Pavel, Matei Toma
Semistability conditions defined by ample classes
55. Ionuț Chiose, Matei Toma
Positive currents on non-kählerian surfaces, II
Rev. Roum. Math. Pures Appl. 68 (2023), 19-32.
54. Ionuț Chiose, Matei Toma
Positive currents on non-kählerian surfaces
Math. Res. Lett. 30 (2023), 375-412.
53. Julius Ross, Matei Toma
Hodge-Riemann Relations for Schur Classes in the Linear and Kähler Cases
Int. Math. Res. Not. IMRN 16 (2023), 13780–13816.
52. Julius Ross, Matei Toma
On Hodge-Riemann Cohomology Classes
in Birational Geometry, Kaehler-Einstein Metrics and Degenerations, Springer Proceedings in Mathematics & Statistics, Volume 409, Springer 2023, edited by Ivan Cheltsov, Xiuxiong Chen, Ludmil Katzarkov and Jihun Park, 763-793.
51. Julius Ross, Matei Toma
Hodge-Riemann bilinear relations for Schur classes of ample vector bundles
Ann. Sci. Éc. Norm. Supér. 56 (2023), 197-241.
50. Matei Toma
Bounded sets of sheaves on relative analytic spaces
Ann. Henri Lebesgue 4 (2021), 1531-1563
49. Alexandra Otiman, Matei Toma
Hodge decomposition for Cousin groups and for Oeljeklaus-Toma manifolds
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XXII (2021), 485-503
48. Daniel Greb, Benjamin Sibley, Matei Toma, Richard Wentworth
Complex algebraic compactifications of the moduli space of Hermitian-Yang-Mills connections on a projective manifold
Geom. Topol. 25 (2021) 1719–1818
47. Matei Toma
Properness criteria for families of coherent analytic sheaves
Algebr. Geom. 7 (2020), 486-502
46. Daniel Greb, Matei Toma
Moduli spaces of sheaves that are semistable with respect to a Kähler polarisation
J. Éc. polytech. Math. 7 (2020), 233–261
45. Daniel Greb, Julius Ross, Matei Toma
A Master Space for Moduli Spaces of Gieseker-Stable Sheaves
Transform. Groups 24 (2019), 379–401
44. Daniel Greb, Julius Ross, Matei Toma
Semi-continuity of Stability for Sheaves and Variation of Gieseker Moduli Spaces
J. Reine Angew. Math. 749 (2019), 227–265
43. Nicholas Buchdahl, Andrei Teleman, Matei Toma
On the Donaldson-Uhlenbeck compactification of instanton moduli spaces on class VII surfaces
Q. J. Math. 69 (2018), 1423-1473
42. Nicholas Buchdahl, Andrei Teleman, Matei Toma
A continuity theorem for families of sheaves on complex surfaces
J. Topol. 10 (2017), 995-1028
41. Arvid Perego, Matei Toma
Moduli spaces of bundles over nonprojective K3 surfaces
Kyoto J. Math. 57 (2017), 107–146
40. Daniel Greb, Matei Toma
Compact moduli spaces for slope-semistable sheaves
Algebr. Geom. 4 (2017), 40-78
39. Daniel Greb, Julius Ross, Matei Toma
Variation of Gieseker Moduli Spaces via Quiver GIT
Geom. Topol. 20 (2016), 1539–1610
38. Daniel Greb, Julius Ross, Matei Toma
Moduli of vector bundles on higher-dimensional base manifolds – construction and variation
Internat. J. Math. 27 (2016), 1650054, DOI: 10.1142/S0129167X16500543
37. Matei Toma
Bounded sets of sheaves on compact Kaehler manifolds
J. Reine Angew. Math. 710 (2016), 77–93
36. Rahim Moosa, Matei Toma
Essential saturation of OT-manifolds
Bull. Math. Soc. Sci. Math. Roumanie 58 (2015), 311-316
35. Marian Aprodu, Matei Toma
Boundedness for some rationally connected threefolds in P^6
Comm. Algebra 42 (2014), 3876-3882
34. Ionuț Chiose, Matei Toma
On compact complex surfaces of Kähler rank one
Amer. J. Math. 135 (2013), 851-860
33. Marian Aprodu, Ruxandra Moraru, Matei Toma
Two-dimensional moduli spaces of vector bundles over Kodaira surfaces
Adv. Math. 231 (2012), 1202-1215
32. Matei Toma
Vector bundles on blown-up Hopf surfaces
Cent. Eur. J. Math. 10 (2012), 1356-1360
31. Matei Toma
A note on the cone of mobile curves
C. R. Math. Acad. Sci. Paris 348 (2010), 71-73
30. Luis Solá Conde, Matei Toma
Maximal rationally connected fibrations and movable curves
Ann. Inst. Fourier (Grenoble), 59 (2009), p. 2359-2369
29. Matei Toma
Fibrés vectoriels stables par rapport à une polarisation mobile
Revue de l’Institut Elie Cartan Nancy 19 (2009), 233-238
28. Rahim Moosa, Ruxandra Moraru, Matei Toma
An essentially saturated surface not of Kaehler-type
Bull. London Math. Soc. 40 (2008), 845-854
27. Matei Toma
On the Kaehler rank of compact complex surfaces
Bull. Soc. Math. de France 136 (2008), 243-260
26. Karl Oeljeklaus, Matei Toma
Logarithmic moduli spaces for surfaces of class VII
Math. Ann. 341 (2008), 323-345
25. Stefan Kebekus, Luis Solá Conde, Matei Toma
Rationally connected foliations after Bogomolov and McQuillan
J. Algebraic Geom. 16 (2007), 65-81
24. Karl Oeljeklaus, Matei Toma
Non-Kaehler compact complex manifolds associated to number fields
Ann. Inst. Fourier Grenoble 55 (2005), 161-171
23. Georges Dloussky, Karl Oeljeklaus, Matei Toma
Class VII surfaces with b_2 curves
Tohoku Math. J. 55 (2003), 283-309
22. Marian Aprodu, Matei Toma
Une note sur les fibrés holomorphes non-filtrables
C. R. Acad. Sci. Paris 336 (2003), 581-584
21. Andrei Teleman, Matei Toma
Holomorphic vector bundles on non-algebraic surfaces
C. R. Acad. Sci. Paris 334 (2002), 383-388
20. Marian Aprodu, Vasile Brînzanescu, Matei Toma
Holomorphic vector bundles on primary Kodaira surfaces
Math. Z. 242 (2002), 62-73
19. Matei Toma
Compact moduli spaces of stable sheaves over non-algebraic surfaces
Documenta Math. 6 (2001), 11-29
18. Karl Oeljeklaus, Matei Toma, Dan Zaffran
Une caractérisation des surfaces d’Inoue-Hirzebruch
Ann. Inst. Fourier Grenoble 51 (2001), 1243-1257
17. Georges Dloussky, Karl Oeljeklaus, Matei Toma
Surfaces de la classe VII admettant un champ de vecteurs, II
Comment. Math. Helv. 76 (2001), 640-664
16. Georges Dloussky, Karl Oeljeklaus, Matei Toma
Surfaces de la classe VII admettant un champ de vecteurs
Comment. Math. Helv. 75 (2000), 255-270
15. Matei Toma
A short proof of a theorem of Camacho and Sad
Enseign. Math. 45 (1999), 311-316
14. Matei Toma
Stable bundles with small $c_2$ over 2-dimensional complex tori
Math. Z. 232 (1999), 511-525
13. Matei Toma
Stable bundles with small second Chern classes on surfaces
ibidem, Stuttgart, 2000, ISBN 3-89821-035-9
12. Paltin Ionescu, Matei Toma
On very ample vector bundles on curves
Int. J. of Math. 8 (1997), 633-643
11. Matei Toma
Stable bundles on non-algebraic surfaces giving rise to compact moduli spaces
C. R. Acad. Sci. Paris 323 (1996), 501-505
10. Matei Toma
Birational models for varieties of Poncelet curves
Manuscripta Math. 90 (1996), 105-119
9. Matei Toma
Three-dimensional scrolls in P^6
Arch. Math. 65 (1995), 444-448 (Abstract)
8. Paltin Ionescu, Matei Toma
Boundedness for some special families of embedded manifolds
Contemporary Mathematics 162 (1994), 215-225
7. Georg Schumacher, Matei Toma
Moduli of Kaehler Manifolds Equipped with Hermite-Einstein Vector Bundles
Rev. Roumaine Math. Pures Appl. 38 (1993), 703-719
6. Georg Schumacher, Matei Toma
The Petersson-Weil metric on the moduli space of Hermite-Einstein bundles and its curvature
Math. Ann. 293(1992), 101-108.
5. Matei Toma
Holomorphic vector bundles on non-algebraic surfaces
Dissertation, Bayreuth 1992
4. Matei Toma
On the existence of simple reducible vector bundles on complex surfaces of algebraic dimension zero
Publ. RIMS, Kyoto Univ. 27 (1991), 533-550.
3. Matei Toma
A class of holomorphic vector bundles on two-dimensional tori
Rev. Roumaine Math.Pures Appl. 36 (1991), 309-317 (Abstract)
2. Matei Toma
Une classe de fibrés vectoriels holomorphes sur les 2-tores complexes
C. R. Acad. Sci. Paris 311 (1990), 257–258.
1. Matei Toma
A class of non-algebraic threefolds
Ann. Inst. Fourier Grenoble 39 (1989), 239-250