Probabilities and Statistic seminar

Upcoming presentations

Workshop "Operads, Symmetries for QFT and Singular SPDEs.

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 3 December 2025 - 5 December 2025 00:00-23:59 Lieu : Salle de conférences Nancy Oratrice ou orateur : Organisé par Yvain Bruned Résumé :

Plus d’informations ici.


Decomposition of optimal transport plans and entropic selection on the line

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 11 December 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Armand Ley Résumé :

We study the optimal transport problem on the real line with the cost given by the distance, a setting in which solutions (called optimal transport plans) are typically non-unique. The first part of the talk presents a decomposition theorem: every optimal transport plan admits a unique decomposition into components, each acting on a specific region where the mass moves forward, moves backward, or remains stationary. Building on this structure, the second part investigates the behaviour of an entropically regularized version of the problem as the regularization parameter tends to zero. A natural candidate for the limit is constructed from our decomposition together with a Strassen-type theorem for a strengthened stochastic order. When the source and target distributions are sufficiently singular, the entropic minimizers converge to this plan. In general, all limit points satisfy a structural property known as weak multiplicativity.


Séminaire SIMBA : Kernel-based testing for single-cell omics

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 11 December 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Polina Arsenteva (ENS Lyon) Résumé :

Single-cell data yield profound insight into the complex nature of molecular feature distributions. However, they also pose statistical analysis challenges. A key challenge is the intricate geometry of these distributions, which requires non-linear analysis methods. We propose a kernel-based framework for comparing conditions in single-cell experiments that allows non-linear comparisons of different cell populations. In this talk, I will explain how embedding the data in an infinite-dimensional reproducing kernel Hilbert space (RKHS) facilitates non-linear operations on the data via linear operations in the feature space. I will present a linear model in the RKHS and introduce a truncated kernel Hotelling-Lawley statistic with an associated kernel trick. This statistic has been shown to have an asymptotic chi-squared distribution, which allows to quantify the significance of the test results. The functionality and flexibility of the proposed approach will be demonstrated on scRNA-Seq data obtained in the context of cerebral arteries profiling. The goal of this analysis is to gain insight into the appearance of intracranial aneurysms.


William Da Silva

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 18 December 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : William Da Silva Résumé :

Michel Davydov

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 18 December 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Michel Davydov Résumé :

Nicolas Chenavier

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 8 January 2026 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas Chenavier (Université du Littoral Côte d'Opale) Résumé :

Pierre-Olivier Goffard

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 8 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre-Olivier Goffard Résumé :

Patrick Tardivel

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Patrick Tardivel (Université de Bourgogne) Résumé :

Etienne Pardoux

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 29 January 2026 10:45-11:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Etienne Pardoux (Marseille) Résumé :

Exposé à Metz. Titre et résumé à venir.


Ariane Carrance

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 5 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ariane Carrance (Vienna) Résumé :

Leticia Mattos

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 12 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Leticia Mattos (Heidelberg) Résumé :

Mariana Olvera-Cravioto

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 12 March 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mariana Olvera-Cravioto (Univ. North Carolina) Résumé :

Nicolas Curien

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 March 2026 10:45-11:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Nicolas Curien (Orsay) Résumé :

Exposé à Metz. Titre et résumé à venir.


Jean-Armel Bra

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 7 May 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jean-Armel Bra (Besançon) Résumé :

Alex Podgorny

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 11 June 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alex Podgorny (Strasbourg) Résumé :

Abonnement iCal

Past presentations

High order heat-type equations and random walks on the complex plane

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 17 June 2021 10:45-11:45 Lieu : Teams Oratrice ou orateur : Sonia Mazzucchi (Università di Trento, Italie) Résumé :

Télécharger le résumé (pdf)


Reduction of a stochastic hybrid model of gene expression using Large deviations theory

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 10 June 2021 10:45-11:45 Lieu : Teams Oratrice ou orateur : Elias Ventre (LBMC, ENS Lyon) Résumé :

Differentiation is the process whereby a cell acquires a specific phenotype, by differential gene expression as a function of time. This is thought to result from the dynamical functioning of an underlying Gene Regulatory Network (GRN). The precise path from the stochastic GRN behavior to the resulting cell state is still an open question. In this presentation, we detail a methodology to reduce a mechanistic model characterizing the evolution of a cell by a system of piecewise deterministic Markov processes (PDMP), to a discrete coarse-grained model on a limited number of cell types, defined as the basins of attraction of the deterministic limit. The transitions between the basins in the weak noise limit can be determined by the unique solution of an Hamilton-Jacobi equation under a particular constraint, which corresponds to the rate function associated to a Large Deviations Principle for the PDMP. We develop a numerical method for approximating the coarse-grained model parameters, and show its accuracy for a toggle-switch network. We deduce from the reduced model an analytical approximation of the stationary distribution of the PDMP system, which appears as a Beta mixture.


Systèmes de processus de renforcement en interaction

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 3 June 2021 10:45-11:45 Lieu : Teams Oratrice ou orateur : Pierre-Yves Louis (IMB, Dijon) Résumé :

Les modèles d’urnes sont utilisés dans de nombreuses applications et sont un exemple fondamental de processus stochastiques de renforcement. En partant de ces modèles, nous nous intéresserons à plusieurs familles de systèmes (finis) de processus de renforcement. Différents résultats sur le comportement collectif en temps long seront présentés. La présence/absence de synchronisation sera discutée, ainsi que les vitesses de convergence en fonction de différents régimes de paramètres. Cet exposé se fonde sur des travaux en collaboration avec I. Crimaldi, P. Dai Pra, I. Minelli et M. Mirebrahimi.


Langevin processes in bounded-in-position domains: application to quasi-stationary distributions

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 27 May 2021 10:45-11:45 Lieu : Teams Oratrice ou orateur : Mouad Ramil (CERMICS, Ecole des Ponts ParisTech) Résumé :

Quasi-stationary distributions can be seen as the first eigenvector associated with the generator of the stochastic differential equation at hand, on a domain with Dirichlet boundary conditions (which corresponds to absorbing boundary conditions at the level of the underlying stochastic processes). Many results on the quasi-stationary distribution hold for non degenerate stochastic dynamics, whose associated generator is elliptic. The case of degenerate dynamics is less clear. In this work, together with T. Lelièvre and J. Reygner (Ecole des Ponts, France) we generalize well-known results on the probabilistic representation of solutions to parabolic equations on bounded domains to the so-called kinetic Fokker-Planck equation on bounded domains in positions, with absorbing boundary conditions. Furthermore, a Harnack inequality, as well as a maximum principle, is provided for solutions to this kinetic Fokker-Planck equation, as well as the existence of a smooth transition density for the associated absorbed Langevin dynamics. The continuity of this transition density at the boundary is studied as well as the compactness, in various functional spaces, of the associated semigroup. This work is a cornerstone to prove the consistency of some algorithms used to simulate metastable trajectories of the Langevin dynamics, for example the Parallel Replica algorithm.


Principe de grande déviation pour les courants et le flot maximal en percolation de premier passage

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 20 May 2021 10:45-11:45 Lieu : Teams Oratrice ou orateur : Barbara Dembin (LPSM, Paris) Résumé :

Considérons la percolation de premier passage dans le réseau renormalisé Z^d/n pour d>=2 : à chaque arête e, on associe une capacité aléatoire c(e)>=0 de telle sorte que la famille (c(e))_e soit indépendante et identiquement distribuée selon une loi G. On peut interpréter cette capacité comme un débit maximal, i.e., la quantité maximale d’eau pouvant traverser l’arête par unité de temps. Considérons un domaine borné et connecté Ω de R^d et deux ensembles disjoints du bord de Ω : un part lequel l’eau peut entrer (la source) et un part lequel l’eau peut sortir (le puits). Nous nous intéressons au flot maximal : la quantité maximale d’eau pouvant entrer dans Ω par unité de temps. Un courant est une fonction sur les arêtes qui décrit la façon dont l’eau circule dans Ω. Dans cet exposé, nous présenterons un principe de grande déviation pour les courants et nous en déduirons par un principe de contraction un principe de grande déviation pour le flot maximal dans Ω.
Travail en collaboration avec Marie Théret.


Strong laws for growth-fragmentation processes with bounded cell size

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 6 May 2021 10:45-11:45 Lieu : Teams Oratrice ou orateur : Alex Watson (University College London) Résumé :

A growth-fragmentation is a stochastic process representing cells with continuously growing mass, which experience sudden splitting events. Growth-fragmentations are used to model cell division and protein polymerisation in biophysics. It is interesting to ask whether these processes converge toward an equilibrium, in which the number of cells is growing exponentially and the distribution of cell sizes approaches some fixed asymptotic profile. In this work, we study a process in which the growth and splitting of an individual cell is largely independent of its mass, with the exception that the mass is bounded above, so it cannot exceed a given constant. We give precise conditions to ensure that, almost surely, the process exhibits this equilibrium behaviour, and express the asymptotic profile in terms of an underlying Lévy process.

This is joint work with Emma Horton (Inria Bordeaux).


Factorisations de genre fixé d'un grand cycle

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 8 April 2021 10:45-11:45 Lieu : Salle de probabilités et statistique virtuelle Oratrice ou orateur : Paul Thévenin (Uppsala University) Résumé :

Une factorisation d’une permutation est une façon d’écrire cette permutation comme un produit de transpositions. L’ensemble des factorisations du n-cycle (12…n), particulièrement étudié en raison notamment de ses liens avec la combinatoire algébrique, est en bijection avec un ensemble de cartes à n sommets, dont le genre est donné par le nombre de transpositions de la factorisation. J’exposerai un algorithme inspiré de cette bijection et permettant de générer une factorisation aléatoire uniforme du n-cycle dont la carte correspondante est de genre fixé.

Je montrerai également comment cet algorithme permet de décrire la limite, en un certain sens, d’une factorisation uniforme de genre donné.

Travail en collaboration avec Valentin Féray et Baptiste Louf.


Multilevel Picard approximations for high-dimensional semilinear parabolic partial differential equations

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 1 April 2021 10:45-11:45 Lieu : Salle de probabilités et statistique virtuelle Oratrice ou orateur : Thomas Kruse (Justus Liebig University, Giessen) Résumé :
We present new approximation methods for high-dimensional semilinear parabolic PDEs. A key idea of our methods is to combine multilevel approximations with Picard fixed-point approximations. We prove in the case of semilinear heat equations with Lipschitz continuous nonlinearities that the computational effort of one of the proposed methods grows polynomially both in the dimension and in the reciprocal of the required accuracy. We illustrate the efficiency of the approximation methods by means of numerical simulations. The talk is based on joint works with Weinan E, Martin HutzenthalerArnulf JentzenTuan Nguyen and Philippe Von Wurstemberger.

Mind2Mind: Transfer learning for GANs

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 25 March 2021 10:45-11:45 Lieu : Salle de probabilités et statistique virtuelle Oratrice ou orateur : Yaël Frégier Résumé :

In this talk, we will present a new approach to the problem of transfer learning for GANs. It allows training deep neural networks with limited computational resources in the specific context of generative models. We prove rigorously, within the framework of optimal transport, a theorem that ensures the convergence of the learning of the transferred Wasserstein GAN. It is joint work with Jean-Baptiste Gouray


Rebondissements de mouvements browniens asymétriques

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 25 March 2021 09:15-10:15 Lieu : Salle de probabilités et statistique virtuelle Oratrice ou orateur : Miguel Martinez Résumé :
Dans cet exposé nous présenterons des résultats concernant les “rebonds” de deux mouvements browniens asymétriques (ou ‘skew brownian motion’) l’un sur l’autre. Nous verrons que dans une échelle de temps adéquat, la distance entre les deux processus se trouve être solution d’une équation différentielle stochastique à sauts dirigée par le processus des excursions de l’un des deux mouvements, tandis que les rebonds eux-mêmes peuvent se décrire en faisant appel à la théorie des extensions markoviennes des processus auto-similaires. La fin de l’exposé sera consacrée à la présentation de certaines perspectives ouvertes par cette étude.

8 9 10 11 12 13 14 15 16 17 18 19