Probabilities and Statistic seminar

Upcoming presentations

Workshop "Operads, Symmetries for QFT and Singular SPDEs.

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 3 December 2025 - 5 December 2025 00:00-23:59 Lieu : Salle de conférences Nancy Oratrice ou orateur : Organisé par Yvain Bruned Résumé :

Plus d’informations ici.


Decomposition of optimal transport plans and entropic selection on the line

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 11 December 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Armand Ley Résumé :

We study the optimal transport problem on the real line with the cost given by the distance, a setting in which solutions (called optimal transport plans) are typically non-unique. The first part of the talk presents a decomposition theorem: every optimal transport plan admits a unique decomposition into components, each acting on a specific region where the mass moves forward, moves backward, or remains stationary. Building on this structure, the second part investigates the behaviour of an entropically regularized version of the problem as the regularization parameter tends to zero. A natural candidate for the limit is constructed from our decomposition together with a Strassen-type theorem for a strengthened stochastic order. When the source and target distributions are sufficiently singular, the entropic minimizers converge to this plan. In general, all limit points satisfy a structural property known as weak multiplicativity.


Séminaire SIMBA : Kernel-based testing for single-cell omics

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 11 December 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Polina Arsenteva (ENS Lyon) Résumé :

Single-cell data yield profound insight into the complex nature of molecular feature distributions. However, they also pose statistical analysis challenges. A key challenge is the intricate geometry of these distributions, which requires non-linear analysis methods. We propose a kernel-based framework for comparing conditions in single-cell experiments that allows non-linear comparisons of different cell populations. In this talk, I will explain how embedding the data in an infinite-dimensional reproducing kernel Hilbert space (RKHS) facilitates non-linear operations on the data via linear operations in the feature space. I will present a linear model in the RKHS and introduce a truncated kernel Hotelling-Lawley statistic with an associated kernel trick. This statistic has been shown to have an asymptotic chi-squared distribution, which allows to quantify the significance of the test results. The functionality and flexibility of the proposed approach will be demonstrated on scRNA-Seq data obtained in the context of cerebral arteries profiling. The goal of this analysis is to gain insight into the appearance of intracranial aneurysms.


William Da Silva

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 18 December 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : William Da Silva Résumé :

Michel Davydov

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 18 December 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Michel Davydov Résumé :

Nicolas Chenavier

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 8 January 2026 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas Chenavier (Université du Littoral Côte d'Opale) Résumé :

Pierre-Olivier Goffard

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 8 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre-Olivier Goffard Résumé :

Patrick Tardivel

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Patrick Tardivel (Université de Bourgogne) Résumé :

Etienne Pardoux

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 29 January 2026 10:45-11:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Etienne Pardoux (Marseille) Résumé :

Exposé à Metz. Titre et résumé à venir.


Ariane Carrance

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 5 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ariane Carrance (Vienna) Résumé :

Leticia Mattos

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 12 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Leticia Mattos (Heidelberg) Résumé :

Mariana Olvera-Cravioto

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 12 March 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mariana Olvera-Cravioto (Univ. North Carolina) Résumé :

Nicolas Curien

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 March 2026 10:45-11:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Nicolas Curien (Orsay) Résumé :

Exposé à Metz. Titre et résumé à venir.


Jean-Armel Bra

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 7 May 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jean-Armel Bra (Besançon) Résumé :

Alex Podgorny

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 11 June 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alex Podgorny (Strasbourg) Résumé :

Abonnement iCal

Past presentations

Chaînes de Markov à  mémoire variable et marches aléatoires persistantes

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 25 June 2020 10:45-11:45 Lieu : Oratrice ou orateur : Peggy Cénac Résumé :

Cet exposé présentera une petite zoologie de chaînes de Markov à 
mémoire variable, avec des conditions d’existence et unicité de mesure
invariante. Il sera ensuite question de marches aléatoires
persistantes, construites à  partir de chaînes de Markov à  mémoire non
bornée, o๠les longueurs de sauts de la marche ne sont pas forcément
intégrables. Un critère de récurrence/transience s’exprimant en
fonction des paramètres du modèle sera énoncé. Suivront plusieurs
exemples illustrant le caractère instable du type de la marche
lorsqu’on perturbe légèrement les paramètres. Les travaux décrits dans
cet exposé sont le fruit de plusieurs collaboration avec B. Chauvin, F.
Paccaut et N. Pouyanne ou B. de Loynes, A. Le Ny et Y. Offret et A.
Rousselle.


Marche aléatoire sur les complexes simpliciaux.

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 18 June 2020 10:45-11:45 Lieu : Oratrice ou orateur : Laurent Decreusefond Résumé :

Les complexes simpliciaux sont les généralisations des graphes géométriques à  des relations non plus binaires mais aussi ternaires ou plus. Ce sont des objets très utilisés en analyse de données topologiques. Nous construisons sur ces objets une nouvelle marche aléatoire qui généralise la marche aléatoire canonique sur un graphe. Nous montrons que son générateur est intimemement au Laplacian du complexe simplicial, qui est une généralisation du Laplacien de graphe. Nous nous intéressons ensuite au processus limite quand la densité du nombre de points tend vers l’infini. Nous montrons comment utiliser cette marche pour localiser les trous de couverture dans un réseau radio.


Approches Bayesiennes pour les protocoles des modèles robustes et discriminatoires

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 11 June 2020 10:45-11:45 Lieu : Oratrice ou orateur : Vincent Agboto Résumé :

Skeletal SDEs for CSBPs

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 4 June 2020 10:45-11:45 Lieu : Oratrice ou orateur : Andreas Kyprianou Résumé :

We look at at a coupled system of stochastic differential equations that describe an infinite parametric family of genealogical skeletal decompositions of a general continuous state branching process (CSBP), supercritical, critical and subcritical. This puts into a common framework a number of known and new path decompositions of CSBPs, including those which involve continuum random trees, and allow us to connect the notion of Evans-O’Connell immortal particle decomposition to that of the skeletal decomposition. This is joint work with Dorka Fekete (Exeter) and Joaquin Fontbona (U. de Chile).


Estimation paramétrique du terme de drift pour des EDS fractionnaires.

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 30 April 2020 10:45-11:45 Lieu : Oratrice ou orateur : Maylis Varvenne Résumé :

Dans cet exposé, nous présenterons de récents travaux effectués en collaboration avec F.Panloup et S.Tindel sur l’estimation paramétrique du terme de drift pour une EDS fractionnaire additive sous des hypothèses assurant l’ergodicité de l’EDS. La méthode d’estimation est en effet basée sur l’identification de la mesure invariante (à  définir dans ce cadre a priori non-markovien) pour laquelle nous construisons une approximation à  partir d’observations discrètes de l’EDS. Nous donnerons des résultats de consistance ainsi qu’une borne non asymptotique sur l’erreur quadratique moyenne.
Pour obtenir ce dernier résultat, nous détaillerons des résultats d’inégalités de concentration pour les EDS fractionnaires que nous avons développés dans de récents travaux.
Enfin, nous discuterons de l’hypothèse d’identifiabilité intrinsèquement liée à  la mesure invariante et nous donnerons quelques illustrations numériques.


Au-delà  de l'inégalité de Poincaré de second ordre

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 9 April 2020 10:45-11:45 Lieu : Oratrice ou orateur : Xiaochuan Yang Résumé :

Dans cet exposé, je présenterai des progrès récents dans l’approximation normale par la méthode de Stein et le calcul de Malliavin.
Nous rappelons tout d’abord l’inégalité de Poincaré de second ordre, une technique puissante qui donne des bornes d’erreur pour une approximation normale en termes de dérivées de Malliavin de second ordre.
Nous nous concentrons ensuite sur les cas o๠l’inégalité de Poincaré de second ordre ne s’applique pas. Cela pourrait être la conséquence d’un manque de régularité ou, dans certains cas, de la non-tractabilité des seconds dérivés.
Cet exposé est basé sur plusieurs travaux conjoints avec R. Lachièze-Rey, I. Nourdin, G. Peccati.


Uniqueness for global solutions to the semidiscrete stochastic heat equation

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 2 April 2020 10:45-11:45 Lieu : Oratrice ou orateur : Tobias Hurth Résumé :

In spatial dimension > 2, we consider the uniqueness problem for global solutions to the stochastic heat equation, discrete in space and continuous in time, with a small Gaussian noise. A similar problem in the continuous-space setting has been studied by Yuri Kifer. We will describe and motivate the following result: Up to a time-dependent random normalization, the global solution is unique in the class of positive functions of subexponential growth and decay in space. The talk is based on a project with Kostya Khanin and Beatriz Navarro Lameda.


La métastabilité en physique statistique.

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 2 April 2020 09:15-11:45 Lieu : Oratrice ou orateur : Boris Nectoux Résumé :

Considérons le processus de Langevin suramorti (Xt)t≥0 solution de l’équation
différentielle stochastique sur R^d
: dXt = −∇f(Xt)dt + racine(h)dBt.

C’est un processus prototypique utilisé pour modéliser l’évolution de systèmes
statistiques. La fonction f : R^d → R est le potentiel du système et h > 0 sa tem-
pérature. Le processus de Langevin suramorti est métastable: il reste bloqué (piégé) dans des voisinages des minima locaux de f sur de longues périodes de temps avant de s’en échapper. C’est une des raisons majeures qui rend inaccessi-
bles l’observation de transitions entre les états macroscopiques du système ainsi que le calcul de quantités thermodynamiques par intégration directe des tra-
jectoires de (Xt)t≥0. De nombreux algorithmes ont été introduits ces dernières années pour accélérer l’échantillonnage de dynamiques métastables (e.g. les
méthodes de Monte-Carlo cinétique et les accelerated dynamics algorithms introduits par A.F. Voter et al. à  Los Alamos). Ces algorithmes reposent sur des estimées précises de l’évènement de sortie d’un état macroscopique Ω ⊂ R
d à  basse température (h<<1) et notamment sur le calcul asymptotique des taux de transition entre les états macroscopiques à  l'aide de la célèbre loi d'Eyring-
Kramers (1935). Dans cet exposé, je présenterai des résultats récents marquant des avancées sig-
nificatives sur l'étude précise de l'évènement de sortie d'un état macroscopique Ω pour le processus de Langevin suramorti quand h << 1, ainsi que les nom-
breuses questions qui restent ouvertes.


Estimation et validation des modèles FARIMA faibles.

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 26 March 2020 09:15-10:15 Lieu : Oratrice ou orateur : Youssef Esstafa Résumé :

Dans ce travail nous considérons, le problème de l’analyse statistique des modèles FARIMA (Fractionally AutoRegressive Integrated Moving-Average) induits par un bruit blanc non corrélé mais qui peut contenir des dépendances non linéaires très générales. Ces modèles sont appelés FARIMA faibles et permettent de modéliser des processus à  mémoire longue présentant des dynamiques non linéaires, de structures souvent non-identifiées, très générales. Relâcher l’hypothèse d’indépendance sur le terme d’erreur, une hypothèse habituellement imposée dans la littérature, permet aux modèles FARIMA faibles d’élargir considérablement leurs champs d’application en couvrant une large classe de processus à  mémoire longue non linéaires.

Nous établissons les procédures d’estimation et de validation des modèles FARIMA faibles. Nous montrons, sous des hypothèses faibles de régularités sur le bruit, que l’estimateur des moindres carrés des paramètres des modèles FARIMA(p,d,q) faibles est fortement convergent et asymptotiquement normal. La matrice de variance asymptotique de l’estimateur des moindres carrés des modèles FARIMA(p,d,q) faibles est de la forme “sandwich”. Cette matrice peut être très différente de la variance asymptotique obtenue dans le cas fort (i.e. dans le cas o๠le bruit est supposé iid). Nous proposons, par deux méthodes différentes, un estimateur convergent de cette matrice. Une méthode alternative basée sur une approche d’auto-normalisation est également proposée pour construire des intervalles de confiance des paramètres des modèles FARIMA(p,d,q) faibles. Cette technique nous permet de contourner le problème de l’estimation de la matrice de variance asymptotique de l’estimateur des moindres carrés.

Nous accordons ensuite une attention particulière au problème de la validation des modèles FARIMA(p,d,q) faibles. Nous montrons que les autocorrélations résiduelles ont une distribution asymptotique normale de matrice de covariance différente de celle obtenue dans le cadre des FARIMA forts. Cela nous permet de déduire la loi asymptotique exacte des statistiques portmanteau et de proposer ainsi des versions modifiées des tests portmanteau standards de Box-Pierce et Ljung-Box. Il est connu que la distribution asymptotique des tests portmanteau est correctement approximée par un khi-deux lorsque le terme d’erreur est supposé iid. Dans le cas général, nous montrons que cette distribution asymptotique est celle d’une somme pondérée de khi-deux. Elle peut être très différente de l’approximation khi-deux usuelle du cas fort. Nous adoptons la même approche d’auto-normalisation utilisée pour la construction des intervalles de confiance des paramètres des modèles FARIMA faibles pour tester l’adéquation des modèles FARIMA(p,d,q) faibles. Cette méthode a l’avantage de contourner le problème de l’estimation de la matrice de variance asymptotique du vecteur joint de l’estimateur des moindres carrés et des autocovariances empiriques du bruit.


Processus empirique basé sur des U-statistiques à  deux échantillons

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 March 2020 10:45-11:45 Lieu : Oratrice ou orateur : Davide Giraudo Résumé :

Après avoir introduit les U-statistiques à  deux échantillons,
nous présenterons
une version empirique de ces-dernières. Ceci permet de détecter un
potentiel changement de loi
dans un échantillon. Nous allons donner des conditions suffisantes pour
la convergence
des U-statistiques à  deux échantillons dans un espace fonctionnel
approprié ainsi qu’une description du processus limite.
Il s’agit d’un travail réalisé en collaboration avec Herold Dehling
(Ruhr-Universität Bochum) et Olimjon Sharipov (National University of
Uzbekistan)