Upcoming presentations
Analysing spatial point patterns on the surface of 3D shapes
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 24 April 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ed Cohen (Imperial College, London) Résumé :Statistical methodology for spatial point patterns has traditionally focused on Euclidean data and planar surfaces. However, with recent advances in 3D biological imaging technologies targeting protein molecules on a cell’s plasma membrane, spatial point patterns are now being observed on complex shapes and manifolds whose geometry must be respected for principled inference. Consequently, there is now a demand for tools that can analyse these data for important scientific studies in cellular and micro-biology. Motivated by studying the spatial distribution of LPS proteins on the surface of E-Coli, we develop the fundamental functional summary statistics for the analysis of point patterns to general convex bounded shapes and demonstrate how they can be used to test for complete spatial randomness. We then develop their multi-type extensions, together with a test for independence of the component marginal processes. To support these methods, we introduce a plug-in estimator for the intensity of a spatial point process on a manifold. We conclude with a discussion on how these methods can readily be extended to a class of non-convex shapes. This talk will aim to provide an accessible overview of the references below.
References:
Ward, E.A.K. Cohen, N. M. Adams. Testing for complete spatial randomness on 3-dimensional bounded convex shapes. Spatial Statistics, Vol. 41, 2021.
Ward, H. S. Battey and E. A. K. Cohen. Nonparametric estimation of the intensity function of a spatial point process on a Riemannian manifold. Biometrika, Vol. 110, 2023.
Kumar, P. Inns, S. Ward, V. Lagage, J. Wang, R. Kaminska, S. Uphoff, E. A. K. Cohen, G. Mamou and C. Kleanthous. Immobile lipopolysaccharides and outer membrane proteins differentially segregate in growing Escherichia coli. Proceedings of the National Academy of Sciences, 122 (10), 2025
Ward, E. A. K. Cohen and N. M. Adams. Functional summary statistics and testing for independence in marked point patterns on the surface of three-dimensional convex shapes. Spatial Statistics, Vol. 67, 2025
Bruno Ebner
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bruno Ebner (Karlsruher Institut für Technologie) Résumé :Brieuc Frénais
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 22 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Brieuc Frénais (IECL) Résumé :Colloquinte de l'équipe de Probabilités et Statisitiques
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 June 2025 09:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : TBA Résumé :Jacek Wesolowski
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 26 June 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jacek Wesolowski (Warsaw University of technology) Résumé :Past presentations
Variational Inference in the Poisson lognormal model for multivariate analysis in ecology
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 February 2018 10:45-11:45 Lieu : Oratrice ou orateur : Julien Chiquet Résumé :Many application domains such as ecology or genomics have to deal with multivariate count data. A typical example is the joint observation of the respective abundances of a set of species in a series of sites, aiming to understand the co-variations between these species. The Gaussian setting provides a canonical way to model such dependencies, but does not apply in general. We adopt here the Poisson lognormal (PLN) model, which is attractive since it allows one to describe multivariate count data with a Poisson distribution as the emission law, while all the dependencies is kept in an hidden friendly multivariate Gaussian layer. While usual maximum likelihood based inference raises some issues in PLN, we show how to circumvent this issue by means of a variational algorithm for which gradient descent easily applies. We then derive several variants of our algorithm to apply PLN to PCA, LDA and sparse covariance inference on multivariate count data. We illustrate our method on microbial ecology datasets, and show the importance of accounting for covariate effects to better understand interactions between species.
Economic and financial problematic in discrete-time models with multiple and non-dominated priors
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 8 February 2018 10:45-11:45 Lieu : Oratrice ou orateur : Laurence Carassus Résumé :We will present some financial and economic problematics arising in discrete-time financial/economic models with a finite time horizon under non-dominated model uncertainty. This means that there exists a set of probability measures representing the agent beliefs and that this set is not dominated by a reference measure.
The technics are based on dynamic programming and measurable selection. We also use analytic sets which display the nice property of being stable by projection or countable unions and intersections but fail to be stable by complementation.
Sur la contrainte des solutions d'équations différentielles dirigées par le mouvement brownien fractionnaire.
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 1 February 2018 10:45-11:45 Lieu : Oratrice ou orateur : Nicolas Marie Résumé :Dans le contexte du calcul d’Itô, il existe plusieurs façons de contraindre la solution d’une équations différentielle dirigée par le mouvement brownien à rester dans un convexe fermé de l’espace : problème de réflexion de Skorokhod, condition d’invariance, singularités du champs de vecteurs avec force de rappel etc. Le but de cet exposé est de présenter des extensions de ces méthodes aux équations différentielles dirigées par le mouvement brownien fractionnaire, dans le contexte de la théorie des trajectoires rugueuses.
Reconstruction probabiliste de généalogies dans les populations végétales polyploïdes
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 25 January 2018 10:45-11:45 Lieu : Oratrice ou orateur : Frédéric Proia Résumé :On proposera dans cet exposé une approche probabiliste de reconstruction de généalogies dans les populations végétales polyploïdes (o๠les chromosomes ne vont pas nécessairement par paires). On présentera dans un premier temps une reconstruction dans une population de genêts diploïdes pour lesquels on dispose de la présence/absence de certains allèles spécifiques : la loi de probabilité du modèle s’appuie sur l’équilibre de Hardy-Weinberg. Dans un second temps, on généralisera cela à une population de rosiers polyploïdes, dont le niveau de ploïdie varie de 2x à 6x (avec une majorité de 4x). Dans un tel modèle, les lois de reproduction sont soumises à des règles combinatoires et à la problématique du dosage allélique (par exemple un hétérozygote 4x peut donner lieu à de nombreux génotypes : ‘aaab’, ‘aabb’, ‘abbb’, ‘aabc’, ‘abbc’, …, ‘abcd’). Notre modèle tient compte de ces phénomènes et propose une arborescence probabilisée des liens génétiques potentiels dans la population.
(Optimal) Best Arm Identification and application to Monte-Carlo Tree Search
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 18 January 2018 10:45-11:45 Lieu : Oratrice ou orateur : Emilie Kaufmann Résumé :In Monte-Carlo Tree Search (MCTS), the goal is to adaptively
explore paths in a game tree and perform random leaves evaluation, in
order to quickly discover the best action to take at the root. In this
talk, I will introduce a simple model for MCTS, that can be viewed as a
structured best arm identification problem in a multi-armed bandit
model. After a review of recent advances to tackle the standard best arm
identification (BAI) problem, I will explain how any BAI algorithm can
be converted to a MCTS algorithm. I will then present empirical results
and sample complexity guarantees for two particular algorithms,
UGapE-MCTS and LUCB-MCTS.
This is joint work with Aurélien Garivier (Université de Toulouse) and
Wouter Koolen (CWI, Amsterdam)
Algorithmes stochastiques pour la statistique robuste en grande dimension
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 11 January 2018 10:45-11:45 Lieu : Oratrice ou orateur : Antoine Godichon Résumé :La médiane géométrique est souvent utilisée en statistique du fait de sa robustesse. On s’intéresse donc à des estimateurs rapides de la médiane, qui consistent en des algorithmes de gradient stochastiques moyennés. On définit aussi un nouvel indicateur de dispersion robuste, appelé Matrice de Covariance Médiane, avant d’en donner des estimateurs récursifs. Cette matrice, sous certaines hypothèses, a les mêmes sous-espaces propres que la matrice de covariance, mais est moins sensible aux données atypiques, et est donc très intéressante pour l’Analyse en Composantes Principales Robuste. Travail joint avec Hervé Cardot et Peggy Cénac (Université de Bourgogne).
Automates cellulaires probabilistes de mémoire 2
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 21 December 2017 10:45-11:45 Lieu : Oratrice ou orateur : Jérôme Casse Résumé :Ces travaux ont été effectués en collaboration avec Irène Marcovici.
Un automate cellulaire probabiliste (ACP) de mémoire 2 est un algorithme stochastique qui transforme 2 mots bi-infinis
Ces ACP de mémoire 2 ont été initialement définis pour étudier le modèle à 8 sommets et nous verrons qu’ils sont également liés à d’autres modèles de la physique statistique comme, par exemple, un nouveau modèle de TASEP synchrone ou le modèle d’Eden dans le demi-plan sur le réseau triangulaire.
Dans cet exposé, nous étudierons les lois invariantes de ces ACP, l’ergodicité de ces derniers, ainsi que les propriétés d’invariance de leur diagramme espace-temps. Ce sont des problèmes insolubles dans le cas général (y compris pour les ACP à mémoire 1) et pour cela nous verrons que nous devons restreindre l’étude à des cas o๠la loi invariante est de type mesure produit ou de type Markov.
S’il nous reste un peu de temps à la fin, nous verrons comme les méthodes employées dans cet exposé permettent de déduire rapidement des propriétés sur un modèle de TASEP synchrone
généralisé.
Estimation of Functional Sparsity in Nonparametric Varying Coefficient Models for Longitudinal Data Analysis
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 14 December 2017 10:45-11:45 Lieu : Oratrice ou orateur : Juhyun Park Résumé :We study the simultaneous domain selection problem for varying coefficient models as a functional regression model for longitudinal data with many covariates. The domain selection problem in functional regression mostly appears under the functional linear regression with scalar response but there is no direct correspondence to functional response models with many covariates. We reformulate the problem as nonparametric function estimation under the notation of “functional sparsity”. Sparsity is the recurrent theme that encapsulates interpretability in the face of regression with multiple inputs, and the problem of sparse estimation is well understood in the parametric setting as variable selection. For nonparametric models, interpretability not only concerns the number of covariates involved but also the {em functional form} of the estimates, and so the sparsity consideration is much more complex. To distinguish the types of sparsity in nonparametric models, we call the former “global sparsity” and the latter “local sparsity”, which constitute functional sparsity. Most existing methods focus on directly extending the framework of parametric sparsity for linear models to nonparametric function estimation to address one or the other, but not both. We develop a penalized estimation procedure that simultaneously addresses both types of sparsity in a unified framework. We establish asymptotic properties of estimation consistency and sparsistency of the proposed method. Our method is illustrated in simulation study and real data analysis, and is shown to outperform the existing methods in identifying both local sparsity and global sparsity.
[this is a joint work with Catherine Y. Tu and Haonan Wang from Colorado State University, U.S.A.]
Convergence de la DSF vers le BW
Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 7 December 2017 10:45-11:45 Lieu : Oratrice ou orateur : TRAN Viet Chi Résumé :Nous considérons, sur le plan, la DSF (Directed Spanning Forest) qui est une forêt dirigée introduite par Baccelli et Bordenave (2007). Soient un processus de Poisson homogène dans le plan et une direction privilégiée (par exemple -e_y). Nous définissons l’ancêtre de chaque atome du processus de Poisson comme étant l’atome le plus proche (pour la distance euclidienne) et d’ordonnée supérieure. Le graphe résultant est la DSF : il s’agit d’une forêt, et même presque sà»rement d’un arbre. Sous de bonnes renormalisations, nous montrons que cette forêt converge en loi vers la toile Brownienne (BW, comme Brownian Web). Dans le cas de la DSF, la difficulté majeure est que la construction, pourtant simple et naturelle, crée des dépendances géométriques très complexes : au fur et à mesure de la construction du graphe, on accumule une information sur la vacuité de certaines régions (aléatoires) du plan. Les critères de convergence existant dans la littérature s’appuient sur des estimées obtenues en général par la construction de martingales ou chaînes de Markov, constructions qui sont impossibles ici. L’obtention de ces estimées clé s’appuie sur des idées de renouvellement fondées sur la géométrie du problème.
Ceci est un travail en commun avec D. Coupier, K. Saha et A. Sarkar.