A new bound for A(A + A) for large sets

Date/heure
5 janvier 2023
14:30 - 15:30

Oratrice ou orateur
Aliaksei Semchankau

Catégorie d'évènement
Séminaire de Théorie des Nombres de Nancy-Metz


Résumé

We prove the following structural result, resembling the Arithmetical Regularity Lemma of B. Green, and Graph Container Theorem in hypergraphs:
Lemma: Let A1,A2,,AkFp be such that |Ai|p for all i. Assume that (A1A2Ak)(a)=o(pk1) for some aFp.
Then there exist sets W1,,Wk, which we call wrappers, and sets Y1,,Yk, such that:
(W1W2Wk)(b)=o(pk1) for some bFp , AiYiWi and |Yi|=o(p) for all i, |Wi|ω=po(1) for all i, where ||ω is a Wiener norm.
As a consequence of wrappers having a small Wiener norm, we obtain the following results.
If A(A+A) does not cover all nonzero residues in Fp, then |A|p/8+o(p).
If A is both sum-free and satisfies A=A, then |A|p/9+o(p).
If |A|loglogplogpp, then |A+A|(1o(1))min(2|A|p,p).
Constants 1/8, 1/9, and 2 are optimal.
To obtain this result, we use Croot-Laba-Sisask Lemma and properties of Wiener norms.
This continues the work of A. Balog, K. Benjamin, P.-Y. Bienvenu, K. Broughan, F. Hennecart, B. Murphy, M. Rudnev, I. Shkredov, I. Shparlinski, and E. Yazici.