Date/heure
10 janvier 2019
10:45 - 11:45
Oratrice ou orateur
Julien Flamant
Catégorie d'évènement Séminaire Probabilités et Statistique
Résumé
Bivariate signals appear in a broad range of applications: polarized waveforms in seismology and optics, current velocities in oceanography, etc. Formally, bivariate signals are 2D vector time series. Existing approaches for bivariate signal processing do not provide a straightforward description of the signal in terms of its polarization properties. For this purpose we introduce a new and generic framework based on a tailored quaternion Fourier transform.
This new framework re-establishes a clear interpretability in terms of polarization attributes of usual quantities such as spectral densities, linear filters, etc.
In this talk, I will introduce the main features of this approach, with the focus on second-order stationary random bivariate signals. I will discuss spectral analysis, linear filtering and some original decompositions of bivariate signals. Synthetic data will illustrate the usefulness of the proposed framework.