An approximate form of Artin’s holomorphy conjecture and nonvanishing of Artin L-functions

Date/heure
18 mars 2021
15:30 - 16:30

Lieu
Salle de séminaire de Théorie des Nombres virtuelle

Oratrice ou orateur
Asif Zaman (University of Toronto)

Catégorie d'évènement
Séminaire de Théorie des Nombres de Nancy-Metz


Résumé
Let k be a number field and G be a finite group, and let FkG be a family of number fields K such that K/k is normal with Galois group isomorphic to G.  Together with  Robert Lemke Oliver and Jesse Thorner, we prove for many families that for almost all KFkG, all of the L-functions associated to Artin representations whose kernel does not contain a fixed normal subgroup are holomorphic and non-vanishing in a wide region.
These results have several arithmetic applications. For example, we prove a strong effective prime ideal theorem  that holds for almost all fields in several natural large degree families, including the family of degree n Sn-extensions for any n2 and the family of prime degree p extensions (with any Galois structure) for any prime p2. I will discuss this result, describe the main ideas of the proof, and share some applications to bounds on -torsion subgroups of class groups, to the extremal order of class numbers, and to the subconvexity problem for Dedekind zeta functions.