Date/heure
7 mars 2019
10:45 - 11:45
Oratrice ou orateur
Edouard Strickler
Catégorie d'évènement Séminaire Probabilités et Statistique
Résumé
De nombreux modèles écologiques sont représentés par des équations différentielles ordinaires. Si ces modèles nous permettent, plus ou moins facilement de comprendre certains comportements observés dans la nature, ils ne prennent pas en compte deux éléments inhérents à la vie réelle : l’aléa et la tragique destinée de toute population – la mort en temps fini.
Dans cet exposé, nous considérons un processus de Markov X « immortel » et une famille de processus de Markov X^N qui meurent en temps fini, et qui convergent vers X, et nous explorerons le comportement de la famille des distributions quasi-stationnaires (QSD) associées aux X^N. Nous verrons en particulier que ce comportement dépend fortement de la nature du processus X (persistant ou non). Cela permet, en un certain sens, de justifier l’approximation et l’étude de processus immortels.