Date/heure
14 janvier 2021
09:15 - 10:15
Oratrice ou orateur
Rémi Peyre
Catégorie d'évènement Groupe de travail Probabilités et Statistique
Résumé
En théorie des probabilités, divers processus ponctuels — dont, par exemple, l’ensemble des valeurs propres de l’« ensemble gaussien unitaire » (GUE) — sont dits « déterminantaux », c’est à dire qu’ils vérifient la propriété suivante : pour x1, …, xn des points, la probabilité que le processus charge simultanément tous ces points est de la forme « det ⸨K(xi, xj)⸩i,j » — o๠le noyau K a parfois une forme particulièrement alambiquée, même pour des processus assez simples… Si vous avez déjà rencontré cette définition au détour d’une conférence, elle vous aura sans doute semblé fort mystérieuse : pourquoi avoir introduit cette notion de processus déterminantal ; d’o๠vient que certains processus naturels se mettent sous cette forme ; en quoi cette définition est-elle susceptible de donner des propriétés intéressantes ; … ?
J’apporterai quelques éléments de réponse à ces questions en m’appuyant sur l’article fondateur du concept de processus déterminantal [Benard & Macchi 1973], article qui traitait de… physique quantique ! En effet, il s’avère que les processus déterminantaux sont essentiellement ceux qui décrivent les positions d’un type de particules quantiques appelées fermions, dont l’état vit dans la partie antisymétrique d’une puissance tensorielle d’espace hilbertien (!).
Bien entendu, toutes ces notions seront expliquées au cours de l’exposé, dont la présentation sera orientée selon un angle aussi mathématique que possible. à€ noter que du point de vue technique, il y aura finalement assez peu de probabilités dans ce que je vais raconter (car ici on se contentera de justifier l’intérêt d’étudier les processus déterminantaux : or les probabilités interviennent surtout ensuite, lors de l’étude à proprement parler) ; par contre, préparez-vous à subir une bonne dose d’analyse hilbertienne complexe…!