Date/heure
4 avril 2024
14:30 - 15:30
Lieu
Salle Döblin
Oratrice ou orateur
Elisa Lorenzo Garcia (Université de Neuchâtel)
Catégorie d'évènement Séminaire de Théorie des Nombres de Nancy-Metz
Résumé
Pour un genre $g>0$ donné, nous donnons des bornes inférieures pour le nombre maximal de points rationnels d’une courbe projective lisse absolument irréductible de genre $g$ sur le corps fini $\mathbb{F}_q$.
D’abord, comme conséquence de la théorie de Katz-Sarnak, on obtient pour tout $g>0$ donné, tout $\epsilon>0$ et tout $q$ suffisamment grand, l’existence d’une courbe de genre $g$ sur $\mathbb{F}_q$ avec au moins $1+q+(2g−\epsilon)\sqrt{q}$ points rationnels.
Puis en utilisant les sommes de puissances des traces de Frobenius des courbes hyperelliptiques, on obtient des bornes inférieures pour lesquelles on peut controler le q le plus petit pour lequel elles sont valides.
Enfin, on donne une construction explicite qui produit des courbes de genre $g$ sur $\mathbb{F}_q$ avec au moins $1+q+4\sqrt{q}-32$ points.
En plus, on ira au-delà de la théorie de Katz-Sarnak pour essayer d’expliquer les asymétries observées dans la distribution du nombre de points.
Celui-ci est un travail conjoint avec J. Bergström, E. Howe et C. Ritzenthaler