(C^*)-algèbre d’un groupoïde

Date/heure
11 mars 2020
14:00 - 15:00

Oratrice ou orateur
Fabien Bessière

Catégorie d'évènement
Séminaire des doctorants


Résumé

Les groupoïdes généralisent de nombreuses notions mathématiques : groupes, espaces topologiques, relations d’équivalences, action de groupes. On peut associer à tout groupoïdes, une (C^*)-algèbre qui « encode » la structure de groupoïdes. Les groupoïdes agissent sur des objets fibrés. Par analogie des actions de groupes sur une (C^*)-algèbre, les groupoïdes vont agir sur des (C_0(X))-algèbres : ce sont des fibrés de (C^*)-algèbres. Je présenterai les propriétés générales des groupoïdes, la construction de la (C^*)-algèbre d’un groupoïde et enfin rapidement la notion de (C_0(X))-algèbres.