Date/heure
4 juin 2018
15:30 - 16:30
Oratrice ou orateur
Lionel Darondeau
Catégorie d'évènement Séminaire de géométrie complexe
Résumé
La formule d’intégration le long des fibres d’un fibré
projectivisé est bien connue, et c’est même la définition des classes de
Segre dans l’exposition de Fulton sur la théorie de l’intersection.
Obtenir une formule d’intégration le long des fibres d’une tour de fibrés
projectivisés paraît donc assez simple : il « suffit » d’itérer la formule.
Cependant, cette stratégie mène à une explosion combinatoire a priori
difficilement contrôlable. Je vais proposer un formalisme permettant de
faire aboutir cette approche naïve.
En guise d’exemple et de motivation, j’évoquerai l’utilisation des
inégalités de Morse holomorphes sur la tour de Demailly-Semple.
Je donnerai aussi des résultats sur les fibrés de drapeaux, qui sont le
cadre le plus naturel o๠se manifeste le principe de scindage.
La partie sur les fibrés de drapeaux est un travail en commun avec Piotr
Pragacz (Varsovie).