L'IECL

Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy)

Abonnement iCal : iCal

Exposés à venir

Exposés passés

Alexis Vasseur - Stabilité L2 pour les systèmes hyperboliques de lois de conservation

13 juin 2023 09:15-10:15 - Salle de conférences Nancy
Oratrice ou orateur : Alexis Vasseur
Résumé :

Le principe fort/faible de Dafermos et DiPerna montre que les solutions fortes (Lipschitziennes) de lois de conservations sont stables, et donc uniques, parmi les solutions faibles entropiques. Dans cette série d’exposés, nous présenterons la théorie de “contraction avec poids et  décalages” qui étend le principe fort/faible aux solutions discontinues avec chocs.


Ludovick Gagnon - La méthode du Backstepping de Fredholm pour les EDPs

11 avril 2023 09:15-10:15 -
Oratrice ou orateur : Ludovick Gagnon
Résumé :

Introduite par Balogh et Krstic dans le début des années 2000 pour les EDP, la méthode du Backstepping consiste à construire une loi de rétroaction stabilisant exponentiellement rapidement l’EDP considérée en cherchant l’existence d’une transformation liant l’EDP à stabiliser à une EDP cible exponentiellement stable. Si cette transformation est inversible, alors la stabilité de l’EDP à stabiliser est assurée. Inspirée de la dimension finie, cette transformation a d’abord été recherchée sous la forme d’une transformation de Volterra. L’inversibilité étant garantie, les propriétés d’existence et de régularité reposent sur une EDP non standard sur le noyau de la transformation. Cette approche s’est avérée très efficace, donnant lieu à une très vaste littérature, bien qu’il n’existe pas à ce jour de théorie permettant d’expliquer l’existence d’une telle transformation.

Plus récemment, Coron et Lü ont proposé la recherche d’une transformation de Fredholm pour la méthode du Backstepping. Bien que plus technique, cette alternative s’est rapidement distinguée par son approche systématique. Dans ce groupe de travail, nous présenterons des travaux récents dans lesquels nous avons identifiés pour la première fois des conditions suffisantes (spectrales et de contrôlabilité) menant à l’existence d’une transformation de Fredholm pour le Backstepping dans un cadre abstrait très général. En plus de ces critères, nous présenterons également des estimations explicites sur la norme de la transformation, ainsi que de son inverse, par rapport au paramètre de décroissance exponentielle, menant en particulier à la stabilisation en temps fini.

Il s’agit de travaux en collaboration avec Amaury Hayat, Swann Marx, Shengquan Xiang et Christophe Zhang.


Ludovick Gagnon - La méthode du Backstepping de Fredholm pour les EDPs

4 avril 2023 09:15-10:15 -
Oratrice ou orateur : Ludovick Gagnon
Résumé :

Introduite par Balogh et Krstic dans le début des années 2000 pour les EDP, la méthode du Backstepping consiste à construire une loi de rétroaction stabilisant exponentiellement rapidement l’EDP considérée en cherchant l’existence d’une transformation liant l’EDP à stabiliser à une EDP cible exponentiellement stable. Si cette transformation est inversible, alors la stabilité de l’EDP à stabiliser est assurée. Inspirée de la dimension finie, cette transformation a d’abord été recherchée sous la forme d’une transformation de Volterra. L’inversibilité étant garantie, les propriétés d’existence et de régularité reposent sur une EDP non standard sur le noyau de la transformation. Cette approche s’est avérée très efficace, donnant lieu à une très vaste littérature, bien qu’il n’existe pas à ce jour de théorie permettant d’expliquer l’existence d’une telle transformation.

Plus récemment, Coron et Lü ont proposé la recherche d’une transformation de Fredholm pour la méthode du Backstepping. Bien que plus technique, cette alternative s’est rapidement distinguée par son approche systématique. Dans ce groupe de travail, nous présenterons des travaux récents dans lesquels nous avons identifiés pour la première fois des conditions suffisantes (spectrales et de contrôlabilité) menant à l’existence d’une transformation de Fredholm pour le Backstepping dans un cadre abstrait très général. En plus de ces critères, nous présenterons également des estimations explicites sur la norme de la transformation, ainsi que de son inverse, par rapport au paramètre de décroissance exponentielle, menant en particulier à la stabilisation en temps fini.

Il s’agit de travaux en collaboration avec Amaury Hayat, Swann Marx, Shengquan Xiang et Christophe Zhang.


Ludovick Gagnon - (Reporté pour mouvement social du 7 mars)

7 mars 2023 09:15-10:15 - Salle de conférences Nancy
Oratrice ou orateur : Ludovick Gagnon
Résumé :

TBA


Ludovick Gagnon - (Reporté pour mouvement social du 7 Mars)

28 février 2023 09:15-10:15 - Salle de conférences Nancy
Oratrice ou orateur : Ludovick Gagnon
Résumé :

TBA


Frédéric Robert - Instabilité pour des équations elliptiques de type courbure scalaire

17 janvier 2023 09:15-10:15 - Salle de conférences Nancy
Oratrice ou orateur : Frédéric Robert
Résumé :

L’équation de courbure scalaire dans une classe conforme est une EDP elliptique non-linéaire d’ordre 2. La nonlinéarité est critique du point de vue des plongements de Sobolev. L’invariance conforme et cette criticalité rendent cette équation non-compacte, au sens où l’ensemble de ses solutions n’est pas compact dans C^2. Cette non-compacité perdure pour des perturbations de l’équation, et on parle alors d’instablité. Dans ces exposés, je parlerai des diverses description de cette instabilité pour cette équation ainsi que pour des classes plus large de problèmes, en particulier d’ordre >2.


Frédéric Robert - Instabilité pour des équations elliptiques de type courbure scalaire

10 janvier 2023 09:15-10:15 - Salle de conférences Nancy
Oratrice ou orateur : Fréréic Robert
Résumé :

L’équation de courbure scalaire dans une classe conforme est une EDP elliptique non-linéaire d’ordre 2. La nonlinéarité est critique du point de vue des plongements de Sobolev. L’invariance conforme et cette criticalité rendent cette équation non-compacte, au sens où l’ensemble de ses solutions n’est pas compact dans C^2. Cette non-compacité perdure pour des perturbations de l’équation, et on parle alors d’instabilité. Dans ces exposés, je parlerai des diverses description de cette instabilité pour cette équation ainsi que pour des classes plus large de problèmes, en particulier d’ordre >2.


Said Benachour - Une promenade avec le Laplacien

15 novembre 2022 09:15-10:15 - Salle de conférences Nancy
Oratrice ou orateur : Said Benachour
Résumé :

Said Benachour - Une promenade avec le Laplacien

8 novembre 2022 09:15-10:15 - Salle de conférences Nancy
Oratrice ou orateur : Said Benachour
Résumé :

Existence globale pour une classe de systèmes de réaction-diffusion : un panorama général

18 octobre 2022 09:15-10:15 - Salle de conférences Nancy
Oratrice ou orateur : El-Haj Laamri
Résumé :

Dans ce groupe de travail, je vais donner un aperçu général des différents résultats d’existence globale en temps d’une classe de systèmes de réaction-diffusion qui proviennent de la modélisation de l’écologie (Systèmes de Lotka-Volterra), , la chimie (réactions chimiques réversibles) et de nombreux autres domaines scientifiques.


Existence globale pour une classe de systèmes de réaction-diffusion : un panorama général

11 octobre 2022 09:15-10:15 - Salle de conférences Nancy
Oratrice ou orateur : El-Haj Laamri
Résumé :

Dans ce groupe de travail, je vais donner un aperçu général des différents résultats d’existence globale en temps d’une classe de systèmes de réaction-diffusion qui proviennent de la modélisation de l’écologie (Systèmes de Lotka-Volterra), , la chimie (réactions chimiques réversibles) et de nombreux autres domaines scientifiques.


Laplacien et géodésiques sur les surfaces hyperboliques

21 juin 2022 09:15-10:15 - Salle de conférences Nancy
Oratrice ou orateur : Samuel Tapie
Résumé :
Sur une surface plus compliquée qu’un tore, les seules géométries homogènes (i.e. où les petits voisinages des points sont tous isométriques) sont les géométries hyperboliques. De même que l’étude du Laplacien sur le tore peut se faire grâce aux séries de Fourier, la compréhension du Laplacien sur les surfaces hyperboliques est liée à celle des géodésiques (les trajectoires qui « avancent tout droit ») sur ces surfaces.
Dans ces exposés, j’introduirai les surfaces hyperboliques selon différents points de vue ainsi que leur Laplacien et leur flot géodésique, et je montrerai comment le bas du spectre du Laplacien est relié à l’entropie du flot géodésique. Si le temps le permet, nous parlerons du lien entre fonctions propres pour le Laplacien et probabilités invariantes pour le flot géodésique.

Laplacien et géodésiques sur les surfaces hyperboliques

14 juin 2022 10:45-11:45 - Salle Döblin
Oratrice ou orateur : Samuel Tapie
Résumé :
Sur une surface plus compliquée qu’un tore, les seules géométries homogènes (i.e. où les petits voisinages des points sont tous isométriques) sont les géométries hyperboliques. De même que l’étude du Laplacien sur le tore peut se faire grâce aux séries de Fourier, la compréhension du Laplacien sur les surfaces hyperboliques est liée à celle des géodésiques (les trajectoires qui « avancent tout droit ») sur ces surfaces.
Dans ces exposés, j’introduirai les surfaces hyperboliques selon différents points de vue ainsi que leur Laplacien et leur flot géodésique, et je montrerai comment le bas du spectre du Laplacien est relié à l’entropie du flot géodésique. Si le temps le permet, nous parlerons du lien entre fonctions propres pour le Laplacien et probabilités invariantes pour le flot géodésique.

Intégration convexe et solutions anomales d'EDP

10 mai 2022 09:15-10:15 - Salle de conférences Nancy
Oratrice ou orateur : Reza Pakzad
Résumé :

On présente d’abord un ensemble de résultats concernant les équations d’Euler en mécanique des fluides, les immersions isométriques, et l’équation de Monge-Ampère au sens très faible. Le but est de souligner dans chaque cas la présence d’une dichotomie, dépendant de la régularité des solutions, de flexibilité (c.-à-d. l’existence et l’abondance de solutions dites anomales) et de rigidité (c.-à-d. les propriétés restrictives des solutions ). Ensuite, on décrit les structures sous-jacentes communes à ces EDP vues comme des problèmes d’inclusions différentielles, qui nous permettent d’utiliser les méthodes du théorème de Baire et de l’intégration convexe pour établir les résultats d’existence, où on fait valoir les aspects fondamentaux de ces méthodes. À titre d’exemple, on décrit comment prouver l’existence de solutions anormales très faibles de régularité de Lipschitz à l’équation de Monge-Ampère, et comment améliorer cette approche pour trouver des solutions C^{1,α} pour α < 1/5 ; (la valeur critique de α pour une telle construction reste un problème ouvert).


Intégration convexe et solutions anomales d'EDP

3 mai 2022 09:15-10:15 - Salle de conférences Nancy
Oratrice ou orateur : Reza Pakzad
Résumé :

On présente d’abord un ensemble de résultats concernant les équations d’Euler en mécanique des fluides, les immersions isométriques, et l’équation de Monge-Ampère au sens très faible. Le but est de souligner dans chaque cas la présence d’une dichotomie, dépendant de la régularité des solutions, de flexibilité (c.-à-d. l’existence et l’abondance de solutions dites anomales) et de rigidité (c.-à-d. les propriétés restrictives des solutions ). Ensuite, on décrit les structures sous-jacentes communes à ces EDP vues comme des problèmes d’inclusions différentielles, qui nous permettent d’utiliser les méthodes du théorème de Baire et de l’intégration convexe pour établir les résultats d’existence, où on fait valoir les aspects fondamentaux de ces méthodes. À titre d’exemple, on décrit comment prouver l’existence de solutions anormales très faibles de régularité de Lipschitz à l’équation de Monge-Ampère, et comment améliorer cette approche pour trouver des solutions C^{1,α} pour α < 1/5 ; (la valeur critique de α pour une telle construction reste un problème ouvert).


Intégration convexe et solutions anomales d'EDP

26 avril 2022 09:15-10:15 - Salle de conférences Nancy
Oratrice ou orateur : Reza Pakzad
Résumé :

On présente d’abord un ensemble de résultats concernant les équations d’Euler en mécanique des fluides, les immersions isométriques, et l’équation de Monge-Ampère au sens très faible. Le but est de souligner dans chaque cas la présence d’une dichotomie, dépendant de la régularité des solutions, de flexibilité (c.-à-d. l’existence et l’abondance de solutions dites anomales) et de rigidité (c.-à-d. les propriétés restrictives des solutions ). Ensuite, on décrit les structures sous-jacentes communes à ces EDP vues comme des problèmes d’inclusions différentielles, qui nous permettent d’utiliser les méthodes du théorème de Baire et de l’intégration convexe pour établir les résultats d’existence, où on fait valoir les aspects fondamentaux de ces méthodes. À titre d’exemple, on décrit comment prouver l’existence de solutions anormales très faibles de régularité de Lipschitz à l’équation de Monge-Ampère, et comment améliorer cette approche pour trouver des solutions C^{1,α} pour α < 1/5 ; (la valeur critique de α pour une telle construction reste un problème ouvert).


Quelques résultats sur l'équation de Hartree. Partie II : existence d'un état fondamental, cas général.

22 mars 2022 09:15-10:15 - Salle de conférences Nancy
Oratrice ou orateur : Jérémy Faupin
Résumé :

L’équation de Hartree est une équation de Schrödinger non linéaire utilisée notamment pour décrire l’évolution de certains systèmes quantiques à grand nombre de particules. Dans la deuxième partie on s’intéressera au problème de l’existence d’un état fondamental, c’est-à-dire l’existence d’un état minimisant la fonctionnelle d’énergie, dans un cadre général. L’approche pour résoudre ce problème de minimisation sous contrainte repose sur des arguments développés par Lions dans les années 80, de type concentration-compacité.


Quelques résultats sur l'équation de Hartree. Partie I : existence d'un état fondamental.

15 mars 2022 09:15-10:15 - Salle de conférences Nancy
Oratrice ou orateur : Jérémy Faupin
Résumé :

L’équation de Hartree est une équation de Schrödinger non linéaire utilisée notamment pour décrire l’évolution de certains systèmes quantiques à grand nombre de particules. Dans la première partie, après avoir rappelé brièvement le contexte physique, on s’intéressera au problème de l’existence d’un état fondamental, c’est-à-dire l’existence d’un état minimisant la fonctionnelle d’énergie. L’approche pour résoudre ce problème de minimisation sous contrainte repose sur des arguments développés par Lions dans les années 80, de type concentration-compacité.


Méthode d’éclatement en homogénéisation périodique (deuxième partie)

1 mars 2022 00:00-00:00 - Salle de conférences Nancy
Oratrice ou orateur : Renata BUNOIU
Résumé :

Dans cette deuxième partie, on appliquera la méthode d’éclatement à deux problèmes qui mènent à des
résultats atypiques. Le premier exemple correspond à un problème de diffusion de la chaleur dans
un milieux à deux composantes complémentaires périodiques, à l’interface imparfaite (la température
présente un saut sur cette interface). La particularité de ce problème vient du fait qu’après
homogénéisation, la température limite est donnée comme combinaison de deux températures
distinctes, chacune étant définie sur tout le domaine initial. Les deux températures vérifient un système
couplé, connu dans la littérature comme « système de Barenblatt ». Le deuxième exemple correspond à
un problème de diffusion de la chaleur à double conductivité et sa particularité vient du fait qu’après
homogénéisation, la température limite est donnée comme la somme de deux termes, le premier étant
la solution d’un problème homogénéisé classique et le deuxième étant la moyenne sur la cellule de
périodicité de la solution d’un problème local.


Méthode d’éclatement en homogénéisation périodique (première partie)

22 février 2022 09:15-10:15 - Salle de conférences Nancy
Oratrice ou orateur : Renata BUNOIU
Résumé :

Dans cette première partie, on présente la définition et quelques propriétés relatives à la méthode
d’éclatement, méthode spécifique pour l’homogénéisation de problèmes périodiques, c’est-à-dire des
problèmes pour lesquels la géométrie et/ou des caractéristiques physiques sont des fonctions
périodiques de certaines variables d’espace, la périodicité étant caractérisée par un petit paramètre
strictement positif. La présence du petit paramètre rend impossible la résolution numérique de ces
problèmes. Le processus d’homogénéisation consiste à faire tendre le petit paramètre vers zéro dans le
problème initial, ce qui conduit à l’obtention d’un problème homogénéisé. Ce problème, qui est une
bonne approximation du problème initial, peut être résolu numériquement. Il fournit ainsi une solution
approchée de la solution initiale. On va illustrer cette méthode en l’appliquant à un problème très
simple, celui de la diffusion de la chaleur dans un milieu périodique.


1 2 3 4 5