Date/heure
16 mars 2015
14:00 - 15:00
Oratrice ou orateur
Peter Heinzner
Catégorie d'évènement Séminaire de géométrie complexe
Résumé
Coadjoint orbits of Lie groups are examples of symplectic manifolds endowed
with a Hamiltonian action. We will consider elliptic coadjoint orbits
of a real semi-simple Lie group $G$. If $G$ is a compact Lie group, then any
orbit $O$ is elliptic. In the general setup the orbit $O$ has a unique invariant
complex structure such that the Kirillov-Kostant-Souriau form is Kählerian.
It turns out that the convex hull $hat O$ of $O$ is closely related to the complex
geometry of $O$. More precisely, the faces of $hat O$ are given as convex hulls of
orbits of centralizer subgroups and there is a strong connection to compact
orbits of parabolic subgroups of the complexi ed group $G^{mathbb C}$.