Des groupes avec la Propriété (T) qui agissent sur le cercle

Date/heure
23 novembre 2020
14:00 - 15:00

Oratrice ou orateur
Bruno Duchesne

Catégorie d'évènement
Séminaire interne géométrie


Résumé

L’étude des actions par homéomorphismes de réseaux de groupes de Lie sur le cercle donne des résultats de rigidité en rang supérieur à  2. Ces résultats de rigidité suggèrent que, plus généralement, ce pourrait être une conséquence de la Propriété (T) qui est une propriété de rigidité pour les représentations unitaires de groupes.

Le groupe de tous les homéomorphismes du cercle est un groupe qui est naturellement muni de la topologie de la convergence uniforme. Nous verrons qu’il existe des sous-groupes fermés qui possèdent la propriété (T), ont de nombreuses représentations unitaires et agissent sur le cercle de manière non élémentaire. Ces constructions utiliseront un petit peu d’analyse/dynamique complexe, des dendrites et des kaléidoscopes !