Date/heure
24 février 2025
14:00 - 15:00
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Bruno Dewer
Catégorie d'évènement Séminaire de géométrie complexe
Résumé
An elementary Mori contraction from a smooth variety $X$ is a morphism with connected fibres onto a normal variety which contracts a single extremal ray of $K_X$-negative curves. Thanks to a result by P. Ionescu and J. Wisniewsi, we know that the length of such a contraction (i.e. the minimal degree $-K_X$ can have on contracted rational curves) is bounded from above. In a paper which dates back to 2013, A. Höring and C. Novelli studied elementary Mori contractions of maximal length, that is, elementary Mori contractions for which the upper bound is met. Their main result exhibits the structure of a projective bundle for the locus of positive-dimensional fibres up to a birational modification. In my talk, I will move to the submaximal case, in other words the case where the length equals its upper bound minus one, and focus on the divisorial case.