Estimation d’erreur a posteriori et critères d’arrêt pour une méthode de décomposition de domaines globale en temps

Date/heure
21 mai 2019
10:45 - 11:45

Oratrice ou orateur
Michel Kern

Catégorie d'évènement
Séminaire Équations aux Derivées Partielles et Applications (Nancy)


Résumé

La modélisation du piégeage capillaire (un fluide reste confiné dans une région du sous-sol) conduit à  une équation de diffusion non-linéaire dégénérée dans laquelle le coefficient de diffusion est discontinu à  travers une interface. Le problème peut-être résolu par une méthode de décomposition de domaines globale en temps, basée sur l’algorithme de relaxation d’onde de Schwarz, avec des conditions de transmission non-linéaires de type Robin à  travers l’interface. Dans chaque sous-domaine, un problème en est résolu sur tout l’intervalle de temps à  chaque itération, avant l’utilisation des conditions de transmission. L’arrêt des itérations utilise un critère construit à  partir d’estimateurs d’erreurs a posteriori, distinguant les erreurs de discrétisation en espace, en temps et l’erreur due à  la décomposition de domaines. Ces estimateurs reposent sur la reconstruction de champs de pression et de flux conformes. Les itérations de décomposition de domaines peuvent ainsi être arrêtées dès que l’erreur de DD est inférieure aux erreurs de discrétisation.