L'IECL

Séminaire Équations aux Derivées Partielles et Applications (Nancy)

Séminaire Équations aux Derivées Partielles et Applications (Nancy)

Abonnement iCal : iCal

Exposés à venir

Nikolay Tzvetkov (ENS Lyon)

18 juin 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Nikolay Tzvetkov (ENS Lyon)
Résumé :

Eric Bonnetier (Institut Fourier)

28 mai 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Eric Bonnetier (Institut Fourier)
Résumé :

Ensemble Kalman Filters - from Data Assimilation to general Inverse Problems

21 mai 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Mark Asch (Université de Picardie)
Résumé :

In this talk, I will briefly recall the historical Kalman filter and its ensemble form. Then I will show how the latter has been successfully implemented for data assimilation, in particular in numerical weather forecasting. More recently, the Ensemble Kalman Filter has been proposed as a methodology for solving very general inverse problems in high-dimensional contexts. I will present the theory, show some simple applications and point out the numerous open problems that remain.


Anisotropic Sobolev inequalities with monomial weights

14 mai 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Maria Rosaria Posteraro (Université de Naples)
Résumé :

Observabilité optimale en temps grand de l’équation de la chaleur et positionnement optimal de capteurs

7 mai 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Yannick Privat (IECL)
Résumé :

Il est bien connu que la reconstruction d’une donnée initiale associée à une équation parabolique à partir de mesures internes de sa solution pendant un temps T, sur un domaine $\omega$ appelé domaine d’observation équivaut à la question de l’observabilité, ou plus précisément à la positivité de ce qu’on appelle la constante d’observabilité associée à $\omega$. Cette constante dépend du domaine d’observation $\omega$ mais aussi de façon cruciale de l’horizon temporel T.  

Dans cet exposé, nous nous intéressons au positionnement optimal de capteurs thermiques. Il est raisonnable de modéliser cette question apr la recherche des domaines extrémaux (lorsqu’ils existent) maximisant cette constante d’observabilité. Pour être physiquement pertinent, nous imposons une restriction sur la mesure du domaine observé. 

Après avoir introduit une relaxation convexe du problème d’optimisation de la forme, nous déterminons le comportement asymptotique des maximiseurs lorsque T tend vers $+\infty$. En utilisant de façon cruciale un principe de la baignoire quantitatif, nous prouvons la forte convergence des maximiseurs vers la fonction caractéristique d’un ensemble mesurable que nous caractérisons précisément, et montrons en outre que cette convergence est exponentielle. 

Il s’agit d’un travail en collaboration avec Idriss Mazari (univ. Paris Dauphine) et Emmanuel Trélat (Sorbonne univ.)


Exposés passés

Existence and boundedness of solutions to singular anisotropic elliptic equations

16 avril 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Florica Cirstea (Université de Sydney)
Résumé :
In this talk, we present new results on the existence and uniform boundedness of solutions for a general class of Dirichlet anisotropic elliptic problems
of the form
$$ -\Delta_{\overrightarrow{p}}u+\Phi_0(u,\nabla u)=\Psi(u,\nabla u) +f \quad \mbox{in } \Omega, \qquad u=0 \quad \mbox{on }\partial \Omega,$$
where $\Omega$ is a bounded domain in $ \mathbb R^N$ $(N\geq 2)$, $ \Delta_{\overrightarrow{p}}u=\sum_{j=1}^N \partial_j (|\partial_j u|^{p_j-2}\partial_j u)$ and
$\Phi_0(u,\nabla u)=\left(\mathfrak{a}_0+\sum_{j=1}^N \mathfrak{a}_j |\partial_j u|^{p_j}\right)|u|^{m-2}u$,
with $\mathfrak{a}_0>0$,
$m,p_j>1$,   $\mathfrak{a}_j\geq 0$ for $1\leq j\leq N$ and $N/p=\sum_{k=1}^N (1/p_k)>1$. We assume that $f \in L^r(\Omega)$ with $r>N/p$. The feature of this study  is the inclusion of a possibly singular gradient-dependent term $\Psi(u,\nabla u)=\sum_{j=1}^N |u|^{\theta_j-2}u\, |\partial_j u|^{q_j}$, where $\theta_j>0$ and $0\leq q_j<p_j$ for $1\leq j\leq N$.
This is joint work with Barbara Brandolini (Università degli Studi di Palermo).

Inverse Regge Pole Problem on a warped ball (séminaire en visioconférence)

5 avril 2024 13:00-14:00 -
Oratrice ou orateur : Jack Borthwick (Université PcGill)
Résumé :
Dans cet exposé, je parlerai d’un nouveau type de problème inverse sur des boules « tordues» consistant à déterminer la métrique à partir de la donnée des « pôles de Regge ». Ces derniers sont définis comme les pôles de la continuation méromorphe de l’opérateur Dirichlet à Neumann par rapport à un paramètre de moment angulaire complexe provenant d’une séparation des variables permise par la géométrie particulière des boules tordues.
Cet exposé est basé sur un travail commun avec N. Boussaïd et T. Daudé (Besançon).

 

! Attention ! Séminaire en visioconférence et à un horaire inhabituel.


Approximation du flot de courbure moyenne des structures minces

2 avril 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Chih-Kang Huang (Institut Jean Lamour)
Résumé :

Nous abordons l’approximation du flot de courbure moyenne des structures minces, pour lesquelles les méthodes classiques des champs de phase ne sont pas adaptées. Par structures minces, nous entendons soit des structures de codimension supérieure, typiquement des filaments, soit des surfaces non fermées et des surfaces non orientables.
Nous proposons une nouvelle approche qui consiste à introduire dans l’équation d’Allen-Cahn un terme de pénalisation localisé autour du squelette de l’ensemble en évolution. Cette approximation garantit une épaisseur minimale pendant l’évolution, prohibant ainsi les auto-intersections. L’efficacité numérique de notre approche est illustrée par des approximations du flot de courbure moyenne des filaments. Nous montrons son utilisation pour les approximations numériques aux problèmes de Steiner et de Plateau en dimension 3. Il s’agit d’un travail en collaboration avec Elie Bretin (INSA Lyon) et Simon Masnou (Lyon 1).


Stabilité en optimisation de forme sous contrainte de convexité

19 mars 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Jimmy Lamboley (Sorbonne Université)
Résumé :
La notion de stabilité des inégalités fonctionnelles et géométriques a gagné beaucoup d’intérêt dans diverses communautés depuis une quinzaine d’année. Dans le cas de l’optimisation de forme (on minimise une énergie dont la variable est un sous-domaine de $\mathbb{R}^N$), la question se formule ainsi : si un domaine est l’unique minimiseur d’une certaine énergie, on voudrait savoir si les domaines ayant une énergie proche de la valeur minimale, sont nécessairement proches en un certain sens de ce minimum ; et ceci de façon quantifiée.
On présentera un exemple (l’inégalité isopérimétrique classique de l’espace euclidien) et une stratégie qui repose sur les notions de dérivation de forme et de théorie de régularité. On verra ensuite comment cette stratégie peut s’adapter à des exemples non standards quand on se restreint à la classe des domaines convexes.
Ceci est un travail en commun avec Raphaël Prunier

On singular limits arising in mechanical models of tumour growth

12 mars 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Noemi David (Université de Lyon)
Résumé :

The mathematical modelling of cancer has been increasingly applying fluid-dynamics concepts to describe the mechanical properties of tissue growth. The biomechanical pressure plays a central role in these models, both as the driving force of cell movement and as an inhibitor of cell proliferation. In this talk, I will present how it is possible to build a bridge between models that have different pressure-velocity or pressure-density relations. In particular, I will focus on the inviscid limit from a Brinkman model to a porous medium-type model, and the incompressible limit that links the latter to a Hele-Shaw free boundary problem with density constraint.


A class of fractional parabolic reaction-diffusion systems with control of total mass : theory and numerics

5 mars 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Maha Daoud (IECL)
Résumé :


Existence de solutions de norme L^2 prescrite pour une équation de Schrödinger non linéaire posée sur un graphe métrique : le cas masse sur-critique. 

20 février 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Louis Jeanjean (Université de France-Comté)
Résumé :

Dans cet exposé, nous discutons de l’existence de solutions de norme L^2 prescrites pour des équations de Schrödinger non linéaires sur des graphes métriques. Une stratégie commune employée pour trouver une telle solution est de chercher un point critique sous contrainte de la fonctionnelle d’énergie associée. Certaines propriétés géométriques de la fonctionnelle varient en fonction de l’exposant du terme non linéaire de l’équation. Dans le cas dit de masse sous-critique, la fonctionnelle est bornée inférieurement et coercive sur la contrainte, de sorte que l’on peut rechercher un point critique en tant que minimum global. C’est pourquoi ce cas a été largement étudié ces dernières années.

Cependant, dans le cas complémentaire, connu sous le nom de masse sur-critique, la fonctionnelle d’énergie n’est plus bornée inférieurement sur la contrainte et présente un manque de d’estimation a priori sur les points critiques possibles. Par conséquent, on sait encore très peu de choses sur ce cas. A travers la présentation des quelques résultats existants, nous discuterons des principaux obstacles qui doivent être surmontés pour traiter ce cas sous des hypothèses générales. Nous présenterons également certains des outils qui ont déjà été développés à cette fin.

Cet exposé est basé sur des travaux communs avec J. Borthwick (Besançon puis Montréal), X. Chang (Changchun) et N. Soave (Turin).


Population models with an interface region inside the domain

13 février 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Pablo Alvarez Caudevilla (Madrid)
Résumé :

We will discuss several models that might be regarded as migration models of populations moving from one part of a domain to the other and becoming part of the population living on the other side. Different situations assuming symmetry of movement between both sides of the domain, following a logistic model in their own environment and assuming spatial heterogeneities, are going to be discussed. Through such a common boundary both populations are coupled, acting as a permeable membrane on which their flow moves in and out. We will describe the precise interplay between the stationary solutions with respect to the parameters involved in the problem, in particular the growth rate of the populations and the coupling parameter involved on the boundary where the interchange of flux is taking place.


Analyse numérique des schémas de Boltzmann sur réseau : des questions fondamentales aux méthodes adaptatives efficientes et précises

6 février 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Thomas Bellotti (Université de Strasbourg)
Résumé :

L’exposé se veut un résumé de mes travaux de thèse, qui portent une attention particulière aux schémas de Boltzmann sur réseau. Cette classe de schémas est utilisée depuis la fin des années ’80, en particulier en mécanique des fluides, et se caractérise par sa grande rapidité. Cependant, les méthodes de Boltzmann sur réseau sont très gourmandes en termes d’espace mémoire et conçues pour des maillages Cartésiens uniformes. De plus, nous manquons d’outils théoriques généraux qui permettent d’en analyser la consistance, la stabilité et enfin la convergence. Le travail s’articule autour de deux axes principaux. Le premier consiste à proposer une stratégie permettant d’appliquer les méthodes de Boltzmann sur réseau à des grilles de calcul non-uniformes adaptées dynamiquement en temps, afin de réduire le coût de calcul et de stockage. Le fait de pouvoir contrôler l’erreur commise et d’être en mesure d’employer la méthode quel que soit le schéma de Boltzmann sous-jacent sont des contraintes supplémentaires à prendre en compte. Pour cela, nous proposons d’adapter dynamiquement le réseau ainsi que d’ajuster toute méthode de Boltzmann à des maillages non-uniformes en nous appuyant sur la multirésolution. Cela a permis de proposer un cadre innovant pour des maillages mobiles en respectant les contraintes posées. Le second axe de recherche consiste à donner un cadre mathématiquement rigoureux aux méthodes de Boltzmann sur réseau, lié en particulier à leur consistance vis-à-vis des EDPs visées, leur stabilité et donc leur convergence. Pour cela, nous proposons une procédure, basée sur des résultats d’algèbre, pour éliminer les moments non-conservés de n’importe quel schéma de Boltzmann sur réseau, en le transformant en un schéma aux différences finies multi-pas sur les moments conservés. Les notions de consistance et stabilité pertinentes pour les méthodes de Boltzmann sur réseau sont donc celles des schémas aux différences finies. En particulier, tous les résultats concernant ces derniers, entre autres le théorème de Lax, se transpose naturellement aux schémas de Boltzmann sur réseau. Une étape ultérieure consiste à étudier la consistance et la stabilité directement sur le schéma de départ sans devoir calculer sa méthode aux différences finies « correspondante ». Cela permet d’en obtenir les équations modifiées et de montrer le bien-fondé des analyses de stabilité à la von Neumann couramment utilisées au sein de la communauté.

 


Peut-on entendre la forme d’une pièce ?

30 janvier 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Tom Sprunck (Université de Strasbourg)
Résumé :

Depuis son introduction par Allen et Berkley en 1972, la méthode des
sources images est l’une des techniques les plus populaires pour la
modélisation des réponses impulsionnelles (RIR) en acoustique des
salles. Cette méthode modélise chaque réflexion d’une impulsion sonore
sur les murs d’une pièce rectangulaire (ou polyédrique) comme une source
impulsionnelle de type Dirac, obtenue à partir de critères géométriques
simples. Quelques travaux récents étudient l’estimation de la forme
d’une pièce tridimensionnelle en exploitant les temps d’arrivée des
échos dans l’enregistrement de la réponse impulsionnelle de salle.
Différentes limitations apparaissent dans ce type de méthode, notamment
la localisation temporelle des échos et leur labellisation. La méthode
présentée dans cet exposé permet la reconstruction des positions 3D des
sources images sans labellisation préalable des réflexions. Le problème
inverse est posé comme un problème convexe en dimension infinie de
reconstruction parcimonieuse en 3D des sources images, l’opérateur
linéaire d’observation à inverser faisant intervenir la solution de
l’équation des ondes avec un terme source mesure. Les dimensions d’une
pièce rectangulaire peuvent ensuite être estimées précisément à l’aide
du nuage de sources images ainsi reconstruites. L’exposé se conclura par
la présentation d’une approche alternative en cours de développement
basée sur l’optimisation de forme et la méthode des solutions
fondamentales, qui devrait permettre de dépasser le cas des pièces
rectangulaires.


Observateurs adaptatifs pour l'équation des ondes et leurs discrétisations associées : formulation et analyse

23 janvier 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Tiphaine Delaunay (Inria Paris)
Résumé :
Le contexte de cette présentation est l’étude de problèmes inverses pour les phénomènes de propagation d’onde sous l’angle de la théorie du contrôle, plus précisément la théorie de l’observation. Notre objectif est de formaliser, d’analyser et de discrétiser des stratégies appelées séquentielles en assimilation de données, où les observations sont prises en compte à mesure qu’elles sont disponibles. Le système résultant appelé observateur (ou estimateur séquentiel) se stabilise sur la trajectoire observée reconstruisant alors l’ état et éventuellement des paramètres inconnus du système. Ici nous nous concentrons plus particulièrement sur la reconstruction de source au second membre d’une équation des ondes, un problème d’estimation qui peut apparaître comme intermédiaire en compléxité entre l’estimation d’ état (ou de condition initiale) et l’identification de paramètres généraux. Dans ce cadre, nous proposons de définir dans un formalisme déterministe en dimension infinie, un estimateur dit de Kalman qui estime séquentiellement le terme source à identifier. Par les outils de programmation dynamique, nous montrons que cet estimateur séquentiel est équivalent à la minimisation d’une fonctionnelle, cette équivalence nous permettant d’en proposer l’analyse de convergence sous condition d’observabilité. Nous démontrons alors des inégalités d’observabilité pour différents types de source en combinant analyse fonctionnelle, méthodes des multiplicateurs et estimations de Carleman. Ces inégalités nous informent notamment sur le caractère éventuellement mal-posé des problèmes inverses de reconstruction que nous étudions et nous permettent d’en quantifier le degré et ainsi d’adapter les régularisation proposées. Concernant les questions de discrétisation et leur analyse numérique, nous défendons l’idée de redéfinir ces observateurs associés à la minimisation de la fonctionnelle une fois que le modèle direct a été discrétisé. Cette approche discrétiser-puis-optimiser est avantageuse pour l’analyse par rapport à optimiser-puis-discrétiser. Il n’en reste pas moins que les inégalités d’observabilité doivent être étendues aux systèmes discrets. A ce propos, nous étendons en particulier des résultats de stabilisation exponentielle uniforme en la discrétisation pour des discrétisations par éléments finis de haut degré de l’équation des ondes.

Numerical solution of Poisson partial differential equation in high dimension using two-layer neural networks

16 janvier 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Mathias Dus
Résumé :

The aim of this article is to analyze numerical schemes using two-layer neural networks with infinite width for the resolution of the high-dimensional Poisson partial differential equation (PDE) with Neumann boundary condition. Using Barron’s representation of the solution with a probability measure defined on the set of parameter values, the
energy is minimized thanks to a gradient curve dynamic on the 2-Wasserstein space of the set of parameter values defining the neural network. Inspired by the work from Bach and Chizat, we prove that if the gradient curve converges, then the represented function is the solution of the elliptic equation considered. In contrast to previous works, the activation function we use here is not assumed to be homogeneous to obtain global convergence of the flow. Numerical experiments are given to show the potential of the method.


Maximisation des valeurs propres du Laplacien avec condition de Neumann

9 janvier 2024 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Eloi Martinet (Université Savoie Mont Blanc)
Résumé :

On s’intéresse au problème d’optimisation de formes consistant à maximiser les valeurs propres du Laplacien avec conditions de Neumann homogènes. Ces valeurs propres interviennent notamment dans des problèmes acoustiques ou thermiques et sont en particulier liées à la « hot spot conjecture ». Contrairement aux valeurs propres de Dirichlet, celles associées au problème de Neumann sont de nature plutôt instable, ce qui rend le problème d’optimisation difficile. On verra comment certaines explorations numériques du problème pour des domaines du plan et de la sphère ont permis de mettre en évidence certaines propriétés des optima.

En fin de présentation, on fera une petite digression sur la capacité d’un réseau de neurones à apprendre les valeurs propres d’un opérateur.


Limites par explosion et propriété d’uniforme concentration pour les minimiseurs de Griffith

19 décembre 2023 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Camille Labourie (Université Paris-Saclay)
Résumé :


Stabilité des fronts d'invasion

12 décembre 2023 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Louis Garénaux (KIT)
Résumé :

Les fronts monostables sont des ondes propagées qui apparaissent dans
des contextes biologiques. Dans cette présentation on présentera les
mécanismes (instabilité VS transport et poids) qui garantissent la
stabilité de ces objets, et donc leur observabilité sur des grandes
périodes de temps. Les arguments seront valables à la fois pour des
équations paraboliques (réaction-diffusion) et hyperboliques (équations
de bilan).


Optimisation de forme motivée par des questions d'aménagement urbain

5 décembre 2023 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Ilias Ftouhi (Universität Erlangen)
Résumé :

Dans cet exposé, nous présenterons la thématique de
l’optimisation de forme et certaines de ses applications dans des
problèmes réels. Nous nous concentrerons ensuite sur quelques problèmes
motivés par la question suivante : où devrions-nous placer un parc à
l’intérieur d’un quartier donné et comment devrions-nous le concevoir
afin de le rendre le plus proche (dans un sens pertinent) à tous les
habitants du quartier ? l’exposé est basé sur des travaux en
collaboration avec Zakaria Fattah (ENSAM, Maroc) et Enrique Zuazua (FAU,
Allemagne).


Une méthode numérique basée sur le contrôle optimal pour les problèmes de transmission scalaires avec coefficients qui changent de signe.

28 novembre 2023 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Mahran Rihani (Ecole Polytechnique)
Résumé :

Dans cet exposé, je présenterai une nouvelle méthode numérique pour résoudre le problème de transmission scalaire avec des coefficients à changement de signe. En électromagnétisme, un tel problème de transmission peut se poser si le domaine d’intérêt consiste en un matériau diélectrique classique et un métal ou un métamatériau, avec, par exemple, une permittivité électrique qui est strictement négative dans le métal ou le métamatériau. La méthode est basée sur une reformulation du problème en un problème de contrôle optimal. Contrairement à d’autres approches existantes, la convergence de cette méthode est prouvée sans aucune condition restrictive sur le maillage utilisé ou sur la régularité de la solution du problème. Ces résultats sont illustrés par quelques expériences numériques.


T-coercivity: a practical tool for the study of variational formulations

21 novembre 2023 10:45-11:45 - Salle Döblin
Oratrice ou orateur : Patrick Ciarlet (ENSTA)
Résumé :

Attention, le séminaire aura lieu exceptionnellement en salle Döblin.

 


Stabilization of a dissipative cat-qubit

14 novembre 2023 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Rémi Robin (Mines Paris)
Résumé :

A dynamically protected cat-qubit is an open quantum system that stabilizes a two-dimensional subspace (called code space) of a quantum harmonic oscillator and shows very promising robustness to noise. Experimental realizations of cat-qubits rely on reservoir engineering, a method of coupling a high-quality cavity with a dissipative cavity. In this talk, after an introduction to the mathematics of open quantum systems, we will present a new generalized LaSalle invariance principle to prove the long-time convergence of a cat-qubit to the code space.


Mouvement par courbure moyenne, réseaux de neurones et applications

7 novembre 2023 10:45-11:45 - Salle de conférences Nancy
Oratrice ou orateur : Elie Bretin (INSA Lyon)
Résumé :

De nombreuses applications en traitement d’images (débruitage, segmentation), en science des données (lissage de nuages de points, associations de formes), en sciences des matériaux (évolution des grains dans les alliages, croissance des cristaux) ou en biologie (modélisation cellulaire) nécessitent l’approximation de l’évolution d’interfaces géométriques telles que l’emblématique mouvement par courbure moyenne.
Dans ce contexte, la méthode des champs de phase est un outil particulièrement efficace pour approcher
l’évolution des surfaces orientées, mais les choses se révèlent beaucoup plus difficiles pour les surfaces non orientées.
Dans cet exposé, nous expliquerons comment approcher de telles évolutions en entraînant des réseaux de neurones dont les structures dérivent des schémas classiques de discrétisation de l’équation d’Allen Cahn.
Des applications numériques aux problèmes de Steiner et de Plateau seront aussi proposées.


1 2 3 4 5 6 7 8 9 10 11