L'IECL

Séminaire Équations aux Derivées Partielles et Applications (Nancy)

Séminaire Équations aux Derivées Partielles et Applications (Nancy)

Abonnement iCal : iCal

Exposés à venir

Exposés passés

On the minimization of convex, variational integrals of linear growth

22 juin 2021 10:45-11:45 - Salle de conférence virtuelle EDP
Oratrice ou orateur : Lisa Beck (Augsburg University)
Résumé :

We study the minimization of functionals of the form

$$ u \mapsto \int_\Omega f(\nabla u) \, dx $$

with a convex integrand $f$ of linear growth (such as the area integrand), among all functions in the Sobolev space W$^{1,1}$ with prescribed boundary values. Due to insufficient compactness properties of these Dirichlet classes, the existence of solutions does not follow in a standard way by the direct method in the calculus of variations and might in fact fail, as it is well-known already for the non-parametric minimal surface problem. In such cases, the functional is extended suitably to the space BV of functions of bounded variation via relaxation, and for the relaxed functional one can in turn guarantee the existence of minimizers. However, in contrast to the original minimization problem, these BV minimizers might in principle have interior jump discontinuities or not attain the prescribed boundary values.

After a short introduction to the problem I want to focus on the question of regularity of BV minimizers. In past years, Sobolev regularity was established provided that the lack of ellipticity — which is always inherent for such linear growth integrands — is mild, while, in general, only some structure results seems to be within reach. In this regard, I will review several results which were obtained in cooperation with Miroslav Bulíček (Prague), Franz Gmeineder (Konstanz), Erika Maringová (Vienna), and Thomas Schmidt (Hamburg).


Sur la diffraction dans une plaque de Kirchhoff-Love infinie : problème direct et problème inverse

15 juin 2021 10:45-11:45 -
Oratrice ou orateur : Laurent Bourgeois (ENSTA)
Résumé :
Cette présentation concernera des problèmes directs et inverses de diffraction dans une plaque de Kirchhoff-Love infinie, l’objet diffractant étant formé par un obstacle pénétrable de forme quelconque.
Quatre types de conditions aux limites sont considérées sur le bord de l’obstacle : plaque encastrée, simplement supportée, portée par un roller et libre.
Concernant le problème direct, nous prouvons le caractère bien posé dans ces quatre situations, pour tout nombre d’onde dans les trois premières, sauf pour un nombre discret de nombres d’onde dans la dernière, qui est la plus difficile (le cas libre correspond à un trou dans la plaque).
Nous aborderons ensuite le problème inverse de reconstruction de l’obstacle à partir de mesures en champ proche. A cette fin, nous adaptons la Linear Sampling Method de Colton-Kirsch pour imager les obstacles, et montrerons des résultats numériques pour illustrer la faisabilité de cette approche.

La partie « problème direct » est un travail en collaboration avec Christophe Hazard, la partie « problème inverse » une collaboration avec Arnaud Recoquillay.


Duality between invisibility and resonance with some applications

8 juin 2021 10:45-11:45 -
Oratrice ou orateur : Houssem Haddar (Inria Saclay)
Résumé :

For a given scatterer, is it possible to design an incident wave that produces no scattering? The answer is yes if and only if the wave number coincides with a resonant frequency of an interior problem formulated inside the scatterer. This duality can be reversed and exploited to compute scattering poles. It can also be used to produce an indicator function for crack densities in a fractured media. These issues and related open questions will be the main topic of my talk.


Optimisation de formes de masse infinitésimale

25 mai 2021 10:45-11:45 - Salle de conférence virtuelle EDP
Oratrice ou orateur : Jean-François Babadjian (Paris Saclay)
Résumé :

Dans ce travail en collaboration avec Flaviana Iurlano et Filip Rindler, nous considérons un problème classique d’optimisation qui consiste à rechercher la forme optimale minimisant la compliance d’une structure élastique sous une contrainte de masse. Nous effectuons une analyse asymptotique des formes « quasi-optimales » quand la masse tend vers zéro. Les configurations limites sont données par des mesures de probabilité minimisant une énergie relaxée explicite, due à une perte de convexité du fait de la contrainte de masse. Nous retrouvons ainsi un modèle limite qui justifie rigoureusement la théorie des treillis de Michell pour des structures optimales de petite dimension par rapport à l’espace ambiant.

 


Singularités d'applications harmoniques renormalisables sur un domaine planaire à valeurs dans une variété

13 avril 2021 10:45-11:45 -
Oratrice ou orateur : Antonin Monteil (University of Bristol)
Résumé :

Il est connu qu’une application harmonique minimisante sur un domaine borné \(\Omega\subset\mathbb{R}^2\) à valeurs dans une variété \(\mathcal{N}\) — à savoir minimisant l’énergie de Dirichlet avec sa propre donnée au bord — est lisse. En particulier, si \(\Omega\) est simplement connexe, alors il n’est pas possible d’étendre à énergie finie une donnée au bord dont la classe d’homotopie n’est pas triviale. Pour de telles données au bord, nous verrons cependant comment définir des applications les plus harmoniques possibles. Ces applications sont harmoniques en dehors d’un ensemble fini de points — ou singularités ponctuelles — d’où l’appellation {\it applications harmoniques singulières}. L’énergie diverge alors logarithmiquement près de chaque singularité et dépend de la classe d’homotopie associée (le degré dans le cas où la variété est le cercle). La minimisation de l’énergie à l’ordre principal conduit à un problème combinatoire non trivial consistant à décomposer la donnée au bord en une liste optimale de singularités topologiquement compatibles ; nous décrirons quelques exemples concrets issus de la physique. À l’ordre suivant, être le plus harmonique possible signifie que l’énergie renormalisée, obtenue en retirant à l’énergie de Dirichlet la contribution infinie près de chaque singularité, est minimale. Nous verrons que pour certaines variétés suffisamment symétriques, en particulier dans le cas du cercle étudié par Bethuel-Brézis-Hélein, il est possible de caractériser le comportement près d’une singularité des applications minimisant l’énergie renormalisée.


Rationalisation des méthodes éléments discrets

6 avril 2021 10:45-11:45 - Salle de conférence virtuelle EDP
Oratrice ou orateur : Frédéric Marazzato (Louisiana State University)
Résumé :

Dans cette présentation sont présentées des méthodes de type éléments discrets ayant la particularité de dériver des équations continues de modèles mécaniques d’intérêt.

La dérivation des équations discrètes depuis les équations continues est d’abord traitée puis un lien est effectué avec les méthodes éléments discrets traditionnelles.
Les modèles mécaniques traités dans cette présentation sont les matériaux élasto-plastiques de Cauchy sous chargement dynamique, les matériaux de Cosserat (matériaux à micro-structure) élastiques, également sous chargement dynamique, ainsi que la fissuration quasi-statique, en deux dimensions d’espace, des matériaux élastiques de Cauchy.
Des résultats numériques permettant de valider les approches choisies sont également présentés pour chaque type de modèle mécanique.

Ces travaux ont été effectués en collaboration avec A. Ern et L. Monasse.


Un problème à discontinuité libre avec condition de Robin

30 mars 2021 10:45-11:45 - Salle de conférence virtuelle EDP
Oratrice ou orateur : Camille Labourie (University of Cyprus)
Résumé :


Boundary sliding mode control of hyperbolic systems

23 mars 2021 10:45-11:45 - Salle de conférence virtuelle EDP
Oratrice ou orateur : Thibault Liard (Université de Nantes)
Résumé :

We study the asymptotic behavior of linear hyperbolic systems subject to unknown boundary disturbances. Our aim is to construct a boundary feedback law, based on a sliding mode procedure, which rejects the disturbance in finite time and which globally stabilizes the equilibrium point zero. The main novelty of our approach consists in defining a sliding variable and a corresponding sliding surface on which the global exponential stability is ensured. More precisely, the sliding surface is derived from the gradient of a Lyapunov function. We will extend this approach to an equation of conservation laws with simulations.


Schéma BGK discret pour le système d'Euler bitempérature en dimension 2

16 mars 2021 10:45-11:45 - Salle de conférence virtuelle EDP
Oratrice ou orateur : Stéphane Brull (IMB, Université de Bordeaux)
Résumé :

Dans cet exposé je m’intéresserai à l’approximation numérique du modèle d’Euler à 2 températures dans le cadre bidimensionnel. Ce modèle est un système hyperbolique non conservatif capable de décrire un plasma hors équilibre. L’une de ses principales difficultés réside dans la gestion des
produits entre la vitesse et les gradients de pression dans le cas de chocs. Nous développerons un schéma numérique de type BGK discret que nous
étendrons à l’ordre 2. Cette extension sera réalisée en découpant chaque cellule en 4 triangles et en effectuant une reconstruction affine par maille. Ces idées ont été développées dans un cadre conservatif. Nous montrons dans le cas présent comment elles peuvent se généraliser à un cadre non conservatif.
Il s’agit d’un travail en collaboration avec Denise Aregba-Driollet et Corentin Prigent.


Extensions du schéma de relaxation pour l’équation de Schrödinger

9 mars 2021 10:45-11:45 -
Oratrice ou orateur : Ingrid Violet (Laboratoire Paul Painlevé, Université de Lille)
Résumé :

En 2004, C. Besse a présenté pour l’équation de Schrödinger non linéaire cubique la méthode d’intégration en temps appelée méthode de relaxation. Celle-ci est une méthode d’ordre 2, linéairement implicite (c’est-à-dire ne nécessitant que la résolution d’un système linéaire à chaque pas de temps) permettant de préserver à la fois la masse et une énergie discrète, propriétés vérifiées par le modèle continue. Dans cet exposé j’en présenterai deux « extensions ». La première permet d’étendre la méthode au cas d’exposants de non linéarité généraux tout en conservant l’ordre 2 et la préservation de la masse et d’une énergie discrète. La seconde, qui peut également s’appliquer à d’autres équations, permet d’obtenir la construction systématique de méthodes linéairement implicites d’ordre aussi élevé que l’on veut.


Stability results of some coupled wave systems with different kinds of localized damping

16 février 2021 10:45-11:45 - Visioconférence
Oratrice ou orateur : Mohammad Akil (LAMA, Université Savoie Mont Blanc)
Résumé :

First, we consider a system of two wave equations coupled by velocities in one-dimensional space with one boundary fractional damping and we prove that the energy of our system decays polynomially with different rates. Second, we investigate the stabilization of a locally coupled wave equations with only one internal viscoelastic damping of Kelvin-Voigt type and we prove that the energy of our system decays polynomially with rate 1/t. Finally, we investigate the stabilization of a locally coupled wave equations with local viscoelastic damping of past history type acting only in one equation via non smooth coefficients and we establish the exponential stability of the solution if and only if the two waves have the same speed of propagation. In case of different speed propagation, we prove that the energy of our system decays polynomially with rate 1/t.


Un problème de calcul des variations en écologie spatiale

9 février 2021 10:45-11:45 -
Oratrice ou orateur : Idriss Mazari (Technische Universität Wien)
Résumé :

Dans cet exposé, nous présenterons plusieurs résultats concernant un problème d’optimisation en écologie spatiale et qui peut se formuler ainsi: comment, au sein d’un domaine, répartir les ressources accessibles à une population afin de garantir que cette dernière soit de taille maximale? Dans cet exposé, nous nous concentrerons sur les propriétés qualitatives de ce problème. Nous mettrons en évidence, entre autre, des propriétés de type concentration/fragmentation des ressources: vaut-il mieux répartir le plus possible les ressources ou, au contraire, les concentrer en un unique endroit? Contrairement à plusieurs critères mieux connus (comme la capacité de survie), où la concentration de ressources est toujours favorable, et ce indépendamment de la vitesse de déplacement des individus, pour la taille de la population, nous montrons que, plus cette vitesse de déplacement est faible, plus la fragmentation est un atout. La première partie de l’exposé sera essentiellement descriptive, et nous donnerons des éléments de preuve dans la seconde. Les différents travaux qui seront présentés ont été réalisés en collaboration avec G. Nadin, Y. Privat et D. Ruiz-Balet.


Ancestral lineages in mutation selection equilibria with moving optimum

2 février 2021 10:45-11:45 -
Oratrice ou orateur : Florian Patout (INRAE, Avignon)
Résumé :

We investigate the evolutionary dynamics of a population structured in phenotype, subjected to trait dependent selection with a linearly moving optimum and an asexual mode of reproduction. The model consists of a non-local and non-linear parabolic PDE. Our main goal is to measure the history of traits when the population stays around an equilibrium. We define an ancestral process based on the idea of neutral fractions. It allows us to derive quantitative information upon the evolution of diversity in the population along time. First, we study the long-time asymptotics of the ancestral process. We show that the very few fittest individuals drive adaptation. We then tackle the adaptive dynamics regime, where the effect of mutations is asymptotically small. In this limit, we provide an interpretation for the minimizer of some related optimization problem, an Hamilton Jacobi equation, as the typical ancestral lineage.


Approximation, existence et unicité pour des équations (de Burgers stochastiques)

26 janvier 2021 10:45-11:45 -
Oratrice ou orateur : Sara Mazzonetto
Résumé :

En se concentrant sur les équations de Burgers stochastiques avec bruit blanc espace-temps, on va dérouler une procédure générale et assez standard qui prouve simultanément existence et d’unicité de la solution de l’équation aux dérivés partielles stochastiques avec bruit additif et la convergence (forte) d’un schéma d’approximation vers la solution. Le schéma sera explicite discret de type Euler exponentiel accéléré. Au cours de la présentation on détaillera aussi toutes les quantités qu’on considère, bruit et convolution stochastique inclus. Une partie de l’exposé est basée sur des travaux commun avec A. Jentzen et D. Salimova.


Problèmes d'inobservabilité pour le contrôle de systèmes dynamiques

19 janvier 2021 10:45-11:45 -
Oratrice ou orateur : Ludovic Sacchelli
Résumé :

La stabilisation des systèmes dynamiques est un problème classique en théorie du contrôle. Dans de nombreux cas provenant de l’ingénierie ou de la physique, seule une mesure partielle de l’état du système est connue. Une approche commune dans ce cas est de s’appuyer sur une estimation de l’état du système sur laquelle on construit notre contrôle. Cependant, l’estimation du système nécessite que la prise de mesure soit une opération injective pour permettre son inversion, c’est l’observabilité du système. Celle-ci dépend fortement de la dynamique. Pour un système dynamique contrôlé non linéaire, cette injectivité est mise à  mal lorsque le système traverse des singularités d’observabilité o๠la reconstruction de l’état est impossible. A ce jour, peu de garanties existent concernant le contrôle et l’estimation simultanée de systèmes admettant des singularités d’observabilité. On discute donc des difficultés posées par ce cas de figure et on explore des stratégies fondées sur les plongements de systèmes dynamiques et les observateurs de dimension infinie.


Les conditions au bord absorbantes du type impédance donnent une erreur O(1) pour les ondes à  hautes fréquences

12 janvier 2021 10:45-11:45 -
Oratrice ou orateur : David Lafontaine
Résumé :

Nous nous intéresserons à  l’équation de Helmholtz, un des plus simples modèles d’onde, posée à  l’extérieur d’un obstacle. Pour résoudre numériquement une telle équation, posée dans un domaine non-borné, il est naturel d’essayer de se ramener à  un domaine borné. Une technique naturelle, très utilisée en pratique, est de tronquer le domaine et d’imposer une condition au bord du type impédance, qui approche la condition de radiation de Sommerfeld caractérisant le comportement sortant de l’onde, sur le bord tronqué. Avec Jeffrey Galkowski (University College London) et Euan Spence (University of Bath), nous venons de montrer qu’une telle approximation est en faite mauvaise à  hautes fréquences, car à  l’origine d’une erreur relative indépendante de la fréquence. Je présenterai ce résultat et l’idée derrière sa preuve, qui se base sur l’utilisation de mesures de défaut semi-classiques, objet mesurant la concentration de la masse des solutions, à  la fois en position et en direction, dans la limite des hautes fréquences.


Observabilition classique et semi-classique pour l'opérateur de Bouendi-Grushin

15 décembre 2020 10:45-11:45 -
Oratrice ou orateur : Chenmin Sun
Résumé :

Grâce à  la vitesse infinie de propagation, l’équation de Schrodinger est souvent observable en temps très court. Cependant, ce n’est pas le cas si la géométrie sous-jacente est sous-elliptique. Dans cet exposé, on considère l’équation de Schrodinger associée à  l’opérateur de Bouendi-Grushin dont le symbole principal dégénère sur une droite. Dans le cas de Bouendi, l’effet de transport se manifeste dans un certain régime qui est responsable à  une condition de contrôle géométrique sous-elliptique. Dans le cas général o๠l’effet sous-elliptique est plus fort, l’observabilité en temps classique n’est pas vraie et l’on va la remplacer du point vue semi-classique, par une estimation de résolvante optimale. Cet exposé est basé sur les collaborations avec N. Burq (Orsay) et C. Letrouit (ENS).


Les symétries des solutions stables aux équations élliptiques semi-linéaires avec conditions au bord de Neumann

8 décembre 2020 10:45-11:45 -
Oratrice ou orateur : Samuel Nordmann
Résumé :

Un résultat important de Casten, Holland (1978) et Matano (1979) établit que si le domaine est convexe et borné, toute solution stable d’une telle équation est constante. Dans cet exposé, nous examinerons dans quelle mesure ce résultat de classification s’étend aux domaines non-bornés ou non-convexes. Ces questions font intervenir la géométrie du domaine de manière délicate. Nos résultats étendent en particulier certains résultats classiques sur la conjecture de De Giorgi a propos de la classification des solutions de l’équation d’Allen dans R^n.


Comportement en temps long d'équations paraboliques sur la droite réelle

1 décembre 2020 10:45-11:45 -
Oratrice ou orateur : Antoine Pauthier
Résumé :

On considère l’équation de la chaleur semi-linéaire sur la droite réelle. Si la solution est bornée, alors elle est globale et lisse, et l’ensemble des profils limite est non vide, connexe. Il est naturel de se demander dans quelle mesure ces profils limites, et donc le comportement en temps long de la solution, sont déterminés par les solutions stationnaires de l’équation. Si par exemple la solution est convergente, alors son ensemble omega-limite est réduit à  un singleton, solution stationnaire de l’équation. La convergence n’est en revanche pas une propriété générique de ces équations, mais si tous les profils limites sont solutions stationnaires on parlera alors de quasiconvergence. Dans ce séminaire je présenterai quelques résultats de quasiconvergence dans le cas o๠la condition initiale admet des limites à  l’infini. En particulier, dans la situation générique o๠les limites à  l’infini sont distinctes, toute solution bornée est quasiconvergente, indépendamment du terme non linéaire. Dans un second temps, on s’intéresse à  la situation de limites égales. Un résultat similaire est impossible, des contre-exemples ayant été donnés. On montre alors que, dans une certaine mesure, les contreexemples connus sont les seules situations de non quasiconvergence.


De l'adhérence au glissement en nanofluidique : une justification mathématique basée sur une chute de la viscosité au voisinage des parois

17 novembre 2020 10:45-11:45 -
Oratrice ou orateur : Matthieu Bonnivard
Résumé :

Dans les modèles d’écoulement d’un fluide visqueux en contact avec par des parois solides, la condition d’adhérence (qui impose que la vitesse du fluide coïncide avec la vitesse de la paroi le long de celle-ci) est la plus communément employée. Cette condition empirique est satisfaisante pour des écoulements à  échelle macroscopique. Cependant, elle devient imprécise à  des échelles très petites, comme par exemple dans le cas d’écoulement dans des nanotubes de carbone, o๠de nombreuses expériences ont mesuré un glissement du fluide sur la paroi. Ce glissement est généralement modélisé par une condition de Navier, qui introduit un paramètre appelé longueur de glissement. De nombreuses hypothèses sont actuellement étudiées pour expliquer l’origine de ce glissement apparent, et obtenir des longueurs de glissement cohérentes avec celles mesurées expérimentalement. L’une d’entre elles est la présence au voisinage de la paroi d’une couche de gaz extrêmement fine réduisant la friction entre le fluide et la paroi. Suivant les travaux de Tim G. Myers (Centre for mathematical research, Barcelona), nous proposerons dans cet exposé un modèle simplifié dans lequel la couche gazeuse est caractérisée par sa viscosité beaucoup plus faible que dans le reste du fluide. En partant d’une condition d’adhérence sur la paroi, nous montrerons que pour un certain choix du rapport des viscosités, le problème limite obtenu lorsque l’épaisseur de la couche gazeuse tend vers zéro est effectivement régi par une condition de Navier. Ce travail est en collaboration avec Julien Olivier (Aix-Marseille Université).


1 2 3 4 5 6 7 8 9 10 11