L'IECL

Séminaire Équations aux Derivées Partielles et Applications (Nancy)

Séminaire Équations aux Derivées Partielles et Applications (Nancy)

Abonnement iCal : iCal

Exposés à venir

Exposés passés

Schéma BGK discret pour le système d'Euler bitempérature en dimension 2

16 mars 2021 10:45-11:45 - Salle de conférence virtuelle EDP
Oratrice ou orateur : Stéphane Brull (IMB, Université de Bordeaux)
Résumé :

Dans cet exposé je m’intéresserai à l’approximation numérique du modèle d’Euler à 2 températures dans le cadre bidimensionnel. Ce modèle est un système hyperbolique non conservatif capable de décrire un plasma hors équilibre. L’une de ses principales difficultés réside dans la gestion des
produits entre la vitesse et les gradients de pression dans le cas de chocs. Nous développerons un schéma numérique de type BGK discret que nous
étendrons à l’ordre 2. Cette extension sera réalisée en découpant chaque cellule en 4 triangles et en effectuant une reconstruction affine par maille. Ces idées ont été développées dans un cadre conservatif. Nous montrons dans le cas présent comment elles peuvent se généraliser à un cadre non conservatif.
Il s’agit d’un travail en collaboration avec Denise Aregba-Driollet et Corentin Prigent.


Extensions du schéma de relaxation pour l’équation de Schrödinger

9 mars 2021 10:45-11:45 -
Oratrice ou orateur : Ingrid Violet (Laboratoire Paul Painlevé, Université de Lille)
Résumé :

En 2004, C. Besse a présenté pour l’équation de Schrödinger non linéaire cubique la méthode d’intégration en temps appelée méthode de relaxation. Celle-ci est une méthode d’ordre 2, linéairement implicite (c’est-à-dire ne nécessitant que la résolution d’un système linéaire à chaque pas de temps) permettant de préserver à la fois la masse et une énergie discrète, propriétés vérifiées par le modèle continue. Dans cet exposé j’en présenterai deux « extensions ». La première permet d’étendre la méthode au cas d’exposants de non linéarité généraux tout en conservant l’ordre 2 et la préservation de la masse et d’une énergie discrète. La seconde, qui peut également s’appliquer à d’autres équations, permet d’obtenir la construction systématique de méthodes linéairement implicites d’ordre aussi élevé que l’on veut.


Stability results of some coupled wave systems with different kinds of localized damping

16 février 2021 10:45-11:45 - Visioconférence
Oratrice ou orateur : Mohammad Akil (LAMA, Université Savoie Mont Blanc)
Résumé :

First, we consider a system of two wave equations coupled by velocities in one-dimensional space with one boundary fractional damping and we prove that the energy of our system decays polynomially with different rates. Second, we investigate the stabilization of a locally coupled wave equations with only one internal viscoelastic damping of Kelvin-Voigt type and we prove that the energy of our system decays polynomially with rate 1/t. Finally, we investigate the stabilization of a locally coupled wave equations with local viscoelastic damping of past history type acting only in one equation via non smooth coefficients and we establish the exponential stability of the solution if and only if the two waves have the same speed of propagation. In case of different speed propagation, we prove that the energy of our system decays polynomially with rate 1/t.


Un problème de calcul des variations en écologie spatiale

9 février 2021 10:45-11:45 -
Oratrice ou orateur : Idriss Mazari (Technische Universität Wien)
Résumé :

Dans cet exposé, nous présenterons plusieurs résultats concernant un problème d’optimisation en écologie spatiale et qui peut se formuler ainsi: comment, au sein d’un domaine, répartir les ressources accessibles à une population afin de garantir que cette dernière soit de taille maximale? Dans cet exposé, nous nous concentrerons sur les propriétés qualitatives de ce problème. Nous mettrons en évidence, entre autre, des propriétés de type concentration/fragmentation des ressources: vaut-il mieux répartir le plus possible les ressources ou, au contraire, les concentrer en un unique endroit? Contrairement à plusieurs critères mieux connus (comme la capacité de survie), où la concentration de ressources est toujours favorable, et ce indépendamment de la vitesse de déplacement des individus, pour la taille de la population, nous montrons que, plus cette vitesse de déplacement est faible, plus la fragmentation est un atout. La première partie de l’exposé sera essentiellement descriptive, et nous donnerons des éléments de preuve dans la seconde. Les différents travaux qui seront présentés ont été réalisés en collaboration avec G. Nadin, Y. Privat et D. Ruiz-Balet.


Ancestral lineages in mutation selection equilibria with moving optimum

2 février 2021 10:45-11:45 -
Oratrice ou orateur : Florian Patout (INRAE, Avignon)
Résumé :

We investigate the evolutionary dynamics of a population structured in phenotype, subjected to trait dependent selection with a linearly moving optimum and an asexual mode of reproduction. The model consists of a non-local and non-linear parabolic PDE. Our main goal is to measure the history of traits when the population stays around an equilibrium. We define an ancestral process based on the idea of neutral fractions. It allows us to derive quantitative information upon the evolution of diversity in the population along time. First, we study the long-time asymptotics of the ancestral process. We show that the very few fittest individuals drive adaptation. We then tackle the adaptive dynamics regime, where the effect of mutations is asymptotically small. In this limit, we provide an interpretation for the minimizer of some related optimization problem, an Hamilton Jacobi equation, as the typical ancestral lineage.


Approximation, existence et unicité pour des équations (de Burgers stochastiques)

26 janvier 2021 10:45-11:45 -
Oratrice ou orateur : Sara Mazzonetto
Résumé :

En se concentrant sur les équations de Burgers stochastiques avec bruit blanc espace-temps, on va dérouler une procédure générale et assez standard qui prouve simultanément existence et d’unicité de la solution de l’équation aux dérivés partielles stochastiques avec bruit additif et la convergence (forte) d’un schéma d’approximation vers la solution. Le schéma sera explicite discret de type Euler exponentiel accéléré. Au cours de la présentation on détaillera aussi toutes les quantités qu’on considère, bruit et convolution stochastique inclus. Une partie de l’exposé est basée sur des travaux commun avec A. Jentzen et D. Salimova.


Problèmes d'inobservabilité pour le contrôle de systèmes dynamiques

19 janvier 2021 10:45-11:45 -
Oratrice ou orateur : Ludovic Sacchelli
Résumé :

La stabilisation des systèmes dynamiques est un problème classique en théorie du contrôle. Dans de nombreux cas provenant de l’ingénierie ou de la physique, seule une mesure partielle de l’état du système est connue. Une approche commune dans ce cas est de s’appuyer sur une estimation de l’état du système sur laquelle on construit notre contrôle. Cependant, l’estimation du système nécessite que la prise de mesure soit une opération injective pour permettre son inversion, c’est l’observabilité du système. Celle-ci dépend fortement de la dynamique. Pour un système dynamique contrôlé non linéaire, cette injectivité est mise à  mal lorsque le système traverse des singularités d’observabilité o๠la reconstruction de l’état est impossible. A ce jour, peu de garanties existent concernant le contrôle et l’estimation simultanée de systèmes admettant des singularités d’observabilité. On discute donc des difficultés posées par ce cas de figure et on explore des stratégies fondées sur les plongements de systèmes dynamiques et les observateurs de dimension infinie.


Les conditions au bord absorbantes du type impédance donnent une erreur O(1) pour les ondes à  hautes fréquences

12 janvier 2021 10:45-11:45 -
Oratrice ou orateur : David Lafontaine
Résumé :

Nous nous intéresserons à  l’équation de Helmholtz, un des plus simples modèles d’onde, posée à  l’extérieur d’un obstacle. Pour résoudre numériquement une telle équation, posée dans un domaine non-borné, il est naturel d’essayer de se ramener à  un domaine borné. Une technique naturelle, très utilisée en pratique, est de tronquer le domaine et d’imposer une condition au bord du type impédance, qui approche la condition de radiation de Sommerfeld caractérisant le comportement sortant de l’onde, sur le bord tronqué. Avec Jeffrey Galkowski (University College London) et Euan Spence (University of Bath), nous venons de montrer qu’une telle approximation est en faite mauvaise à  hautes fréquences, car à  l’origine d’une erreur relative indépendante de la fréquence. Je présenterai ce résultat et l’idée derrière sa preuve, qui se base sur l’utilisation de mesures de défaut semi-classiques, objet mesurant la concentration de la masse des solutions, à  la fois en position et en direction, dans la limite des hautes fréquences.


Observabilition classique et semi-classique pour l'opérateur de Bouendi-Grushin

15 décembre 2020 10:45-11:45 -
Oratrice ou orateur : Chenmin Sun
Résumé :

Grâce à  la vitesse infinie de propagation, l’équation de Schrodinger est souvent observable en temps très court. Cependant, ce n’est pas le cas si la géométrie sous-jacente est sous-elliptique. Dans cet exposé, on considère l’équation de Schrodinger associée à  l’opérateur de Bouendi-Grushin dont le symbole principal dégénère sur une droite. Dans le cas de Bouendi, l’effet de transport se manifeste dans un certain régime qui est responsable à  une condition de contrôle géométrique sous-elliptique. Dans le cas général o๠l’effet sous-elliptique est plus fort, l’observabilité en temps classique n’est pas vraie et l’on va la remplacer du point vue semi-classique, par une estimation de résolvante optimale. Cet exposé est basé sur les collaborations avec N. Burq (Orsay) et C. Letrouit (ENS).


Les symétries des solutions stables aux équations élliptiques semi-linéaires avec conditions au bord de Neumann

8 décembre 2020 10:45-11:45 -
Oratrice ou orateur : Samuel Nordmann
Résumé :

Un résultat important de Casten, Holland (1978) et Matano (1979) établit que si le domaine est convexe et borné, toute solution stable d’une telle équation est constante. Dans cet exposé, nous examinerons dans quelle mesure ce résultat de classification s’étend aux domaines non-bornés ou non-convexes. Ces questions font intervenir la géométrie du domaine de manière délicate. Nos résultats étendent en particulier certains résultats classiques sur la conjecture de De Giorgi a propos de la classification des solutions de l’équation d’Allen dans R^n.


Comportement en temps long d'équations paraboliques sur la droite réelle

1 décembre 2020 10:45-11:45 -
Oratrice ou orateur : Antoine Pauthier
Résumé :

On considère l’équation de la chaleur semi-linéaire sur la droite réelle. Si la solution est bornée, alors elle est globale et lisse, et l’ensemble des profils limite est non vide, connexe. Il est naturel de se demander dans quelle mesure ces profils limites, et donc le comportement en temps long de la solution, sont déterminés par les solutions stationnaires de l’équation. Si par exemple la solution est convergente, alors son ensemble omega-limite est réduit à  un singleton, solution stationnaire de l’équation. La convergence n’est en revanche pas une propriété générique de ces équations, mais si tous les profils limites sont solutions stationnaires on parlera alors de quasiconvergence. Dans ce séminaire je présenterai quelques résultats de quasiconvergence dans le cas o๠la condition initiale admet des limites à  l’infini. En particulier, dans la situation générique o๠les limites à  l’infini sont distinctes, toute solution bornée est quasiconvergente, indépendamment du terme non linéaire. Dans un second temps, on s’intéresse à  la situation de limites égales. Un résultat similaire est impossible, des contre-exemples ayant été donnés. On montre alors que, dans une certaine mesure, les contreexemples connus sont les seules situations de non quasiconvergence.


De l'adhérence au glissement en nanofluidique : une justification mathématique basée sur une chute de la viscosité au voisinage des parois

17 novembre 2020 10:45-11:45 -
Oratrice ou orateur : Matthieu Bonnivard
Résumé :

Dans les modèles d’écoulement d’un fluide visqueux en contact avec par des parois solides, la condition d’adhérence (qui impose que la vitesse du fluide coïncide avec la vitesse de la paroi le long de celle-ci) est la plus communément employée. Cette condition empirique est satisfaisante pour des écoulements à  échelle macroscopique. Cependant, elle devient imprécise à  des échelles très petites, comme par exemple dans le cas d’écoulement dans des nanotubes de carbone, o๠de nombreuses expériences ont mesuré un glissement du fluide sur la paroi. Ce glissement est généralement modélisé par une condition de Navier, qui introduit un paramètre appelé longueur de glissement. De nombreuses hypothèses sont actuellement étudiées pour expliquer l’origine de ce glissement apparent, et obtenir des longueurs de glissement cohérentes avec celles mesurées expérimentalement. L’une d’entre elles est la présence au voisinage de la paroi d’une couche de gaz extrêmement fine réduisant la friction entre le fluide et la paroi. Suivant les travaux de Tim G. Myers (Centre for mathematical research, Barcelona), nous proposerons dans cet exposé un modèle simplifié dans lequel la couche gazeuse est caractérisée par sa viscosité beaucoup plus faible que dans le reste du fluide. En partant d’une condition d’adhérence sur la paroi, nous montrerons que pour un certain choix du rapport des viscosités, le problème limite obtenu lorsque l’épaisseur de la couche gazeuse tend vers zéro est effectivement régi par une condition de Navier. Ce travail est en collaboration avec Julien Olivier (Aix-Marseille Université).


Les isometries de régularité très faible et quelques problèmes d'analyse non-linéaire

3 novembre 2020 10:45-11:45 -
Oratrice ou orateur : Mohammad Reza Pakzad
Résumé :

On considère une question étroitement liée à  une conjecture de Gromov: A quel seuil de régularité les immersions isométriques des domaines de $mathbb R^2$ dans $mathbb R^3$ sont développables? On cherche la réponse dans les régimes de Hölder $C^{1,s}$ ou plus généralement de Sobolev fractionnel $W^{1+s, p}$. Des bornes supérieures pour la valeur de seuil de $s$ sont classiquement obtenues par la méthode de l’integration convexe. Pour trouver les bornes inférieures, on définit une seconde forme fondamentale pour l’isométrie en question et on démontre qu’elle est une solution faible du système d’EDP de Gauss-Codazzi si $s>2/3$. L’analyse menant à  une démonstration de cette rigidité passe alors à  une discussion des solutions non-convexes et très faibles de l’équation de Monge-Ampère, et aux problèmes liés au déterminant de jacobien distributionnel.


Existence globale pour une classe de systèmes de réaction-diffusion avec des données initiales peu régulières

13 octobre 2020 10:45-11:45 -
Oratrice ou orateur : El Haj Laamri
Résumé :

Durant les 40 dernières années, des efforts considérables ont été consacrées à  l’étude des systèmes de réaction-diffusion avec des données initiales bornées ou de carré intégrable, et avec des non-linéarités au plus quadratiques. En revanche, on en sait relativement peu dans le cas o๠les données initiales sont de faible régularité et les non-linéarités sont à  croissance super-quadratique. Dans cet exposé, nous présentons une nouvelle estimation a priori avec des données initiales dans L1 qui étend l’estimation a priori L2 de Michel Pierre. Ensuite, nous expliquons comment cette estimation a priori L1 nous permet : de simplifier la preuve de certains résultats récents ; d’établir de nouveaux résultats d’existence pour des systèmes o๠les non-linéarités sont super-quadratiques. L’exposé repose sur un travail récent avec Benoit Perthame et sur un papier avec Michel Pierre.


Liouville type results for a nonlocal obstacle problem

10 mars 2020 10:45-11:45 -
Oratrice ou orateur : Julien Brasseur
Résumé :

My talk will be devoted to the qualitative properties of some nonlocal reaction-diffusion equations set on “perforated » open sets. One of the cornerstones in the study of this type of problem lies in suitable rigidity results of Liouville-type, which allow the classification of stationary solutions. I will give some results in this direction, under some geometric assumptions on the domain. This talk is based on some joint works with J. Coville, F. Hamel and E. Valdinoci.


Long time existence for small solutions of Hamiltonian or reversible quasilinear equations on the circle.

3 mars 2020 10:45-11:45 -
Oratrice ou orateur : Felice Iandoli
Résumé :

I will present some recent results obtained in collaboration with Roberto Feola. I shall prove that small solutions of quasilinear equations on the circle exist for long time (depending on the size of the initial condition) if the equation enjoys an algebraic structure. In this directions I will consider the Hamiltonian or reversible equations. The main difficulties are the lack of dispersion, due to the compactness of the circle, and the lack of “easy” energy estimates due to the quasi-linear nature the considered equations.


Équation des ondes non-linéaires stochastiques en dimension 2.

11 février 2020 10:45-11:45 -
Oratrice ou orateur : Tristan Robert
Résumé :

Dans cet exposé, on considère l’équation des ondes amorties non-linéaires sur le tore de dimension 2, en présence d’un terme source stochastique donné par un bruit blanc espace-temps. On expliquera pourquoi la faible régularité du bruit impose de recourir à  une procédure de renormalisation afin d’obtenir une dynamique non triviale. Le cas d’une non-linéarité polynomiale est maintenant bien compris, et on se concentrera sur deux cas particuliers de non-linéarité non polynomiale donnés par le modèle de sine-Gordon et le modèle exp(Phi)_2 hyperbolique.


Sur la convergence ponctuelle de l'équation de Schrodinger non-linéaire.

4 février 2020 10:45-11:45 -
Oratrice ou orateur : Renato Luca
Résumé :

On considère l’équation de Schrodinger non-linéaire avec des non-linéarités polynomiales et des données initiales dans les espaces de Sobolev H^s. La question est de trouver la régularité s > 0 minimale telle qu’on a convergence ponctuelle des solutions aux données initiales. On étend les résultats linéaires au cas non-linéaire et on prouve des résultats plus fins pour des données initiales aléatoires.


Résonances quantiques en présence d'hyperbolicité

28 janvier 2020 10:45-11:45 -
Oratrice ou orateur : Stéphane Nonnenmacher
Résumé :

La diffusion quantique (ou ondulatoire) concerne l’évolution d’ondes (ou de fonctions d’onde) provenant de l’infini, diffusées par un potentiel (ou un obstacle) localisé. La description de l’évolution des ondes aux temps longs débouche sur l’étude du spectre de résonances de l’opérateur engendrant l’évolution (opérateur hamiltonien, laplacien). Les résonances sont des valeurs propres généralisées de cet opérateur, à  valeurs complexes. On cherche à  décrire les résonances proches de l’axe réel (résonances à  temps de vie long), qui influencent plus fortement l’évolution aux temps longs. Dans le régime de haute fréquence (ou régime semiclassique), la distribution de ces résonances est influencée par la dynamique classique associée: le flot hamiltonien ou le flot géodésique; en particulier, l’ensemble des trajectoires captées (trajectoires ne s’échappant pas vers l’infini) joue un rôle important. Nous nous focaliserons sur des situations dans lesquelles ces trajectoires captées ont des propriétés d’instabilité (hyperbolicité). On obtiendra alors des critères dynamique sur ce flot, conduisant à  l’existence d’une bande sans résonances (« gap » de résonances). Par exemple, pour des configurations simples de plusieurs obstacles convexes dans l’espace euclidien, les trajectoires captées peuvent former un ensemble fractal portant une dynamique chaotique (on est dans une situation de « chaos quantique ouvert »). D’autres exemples en géométrie hyperbolique seront donnés. On étudiera également le cas o๠l’ensemble capté forme une sous-variété symplectique, sur laquelle le flot hamiltonien est transversalement hyperbolique. Ce dernier cas donne lieu à  une application inattendue: il permet d’analyser un problème de dynamique classique, la décroissance des corrélations pour un flot uniformément hyperbolique (flot Anosov de contact).


Régularité partielle des applications harmoniques fractionnaires à  valeurs dans une sphère.

21 janvier 2020 10:45-11:45 -
Oratrice ou orateur : Marc Pegon
Résumé :

De manière analogue aux applications harmoniques classiques, qui sont les points critiques de l’énergie de Dirichlet, les applications s-harmoniques fractionnaires sont définies comme les points critiques de l’énergie de Dirichlet associée à  la puissance s du Laplacien, pour s dans (0,1). Dans cet exposé, après quelques rappels sur les applications harmoniques classiques, je présenterai le cadre fractionnaire et les résultats de régularité partiels que nous avons obtenus pour les applications à  valeurs sphère. Lorsque s=1/2, je ferai également le lien avec les surfaces minimales à  bord libre, qui nous a permis d’améliorer des résultats connus de régularité partielle dans le cas 1/2 minimisant.


1 2 3 4 5 6 7 8 9 10 11 12