Exposés à venir
Exposés passés
Population models with an interface region inside the domain
13 février 2024 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Pablo Alvarez Caudevilla (Madrid)
Résumé :
We will discuss several models that might be regarded as migration models of populations moving from one part of a domain to the other and becoming part of the population living on the other side. Different situations assuming symmetry of movement between both sides of the domain, following a logistic model in their own environment and assuming spatial heterogeneities, are going to be discussed. Through such a common boundary both populations are coupled, acting as a permeable membrane on which their flow moves in and out. We will describe the precise interplay between the stationary solutions with respect to the parameters involved in the problem, in particular the growth rate of the populations and the coupling parameter involved on the boundary where the interchange of flux is taking place.
Analyse numérique des schémas de Boltzmann sur réseau : des questions fondamentales aux méthodes adaptatives efficientes et précises
6 février 2024 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Thomas Bellotti (Université de Strasbourg)
Résumé :
L’exposé se veut un résumé de mes travaux de thèse, qui portent une attention particulière aux schémas de Boltzmann sur réseau. Cette classe de schémas est utilisée depuis la fin des années ’80, en particulier en mécanique des fluides, et se caractérise par sa grande rapidité. Cependant, les méthodes de Boltzmann sur réseau sont très gourmandes en termes d’espace mémoire et conçues pour des maillages Cartésiens uniformes. De plus, nous manquons d’outils théoriques généraux qui permettent d’en analyser la consistance, la stabilité et enfin la convergence. Le travail s’articule autour de deux axes principaux. Le premier consiste à proposer une stratégie permettant d’appliquer les méthodes de Boltzmann sur réseau à des grilles de calcul non-uniformes adaptées dynamiquement en temps, afin de réduire le coût de calcul et de stockage. Le fait de pouvoir contrôler l’erreur commise et d’être en mesure d’employer la méthode quel que soit le schéma de Boltzmann sous-jacent sont des contraintes supplémentaires à prendre en compte. Pour cela, nous proposons d’adapter dynamiquement le réseau ainsi que d’ajuster toute méthode de Boltzmann à des maillages non-uniformes en nous appuyant sur la multirésolution. Cela a permis de proposer un cadre innovant pour des maillages mobiles en respectant les contraintes posées. Le second axe de recherche consiste à donner un cadre mathématiquement rigoureux aux méthodes de Boltzmann sur réseau, lié en particulier à leur consistance vis-à-vis des EDPs visées, leur stabilité et donc leur convergence. Pour cela, nous proposons une procédure, basée sur des résultats d’algèbre, pour éliminer les moments non-conservés de n’importe quel schéma de Boltzmann sur réseau, en le transformant en un schéma aux différences finies multi-pas sur les moments conservés. Les notions de consistance et stabilité pertinentes pour les méthodes de Boltzmann sur réseau sont donc celles des schémas aux différences finies. En particulier, tous les résultats concernant ces derniers, entre autres le théorème de Lax, se transpose naturellement aux schémas de Boltzmann sur réseau. Une étape ultérieure consiste à étudier la consistance et la stabilité directement sur le schéma de départ sans devoir calculer sa méthode aux différences finies « correspondante ». Cela permet d’en obtenir les équations modifiées et de montrer le bien-fondé des analyses de stabilité à la von Neumann couramment utilisées au sein de la communauté.
Peut-on entendre la forme d’une pièce ?
30 janvier 2024 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Tom Sprunck (Université de Strasbourg)
Résumé :
Depuis son introduction par Allen et Berkley en 1972, la méthode des
sources images est l’une des techniques les plus populaires pour la
modélisation des réponses impulsionnelles (RIR) en acoustique des
salles. Cette méthode modélise chaque réflexion d’une impulsion sonore
sur les murs d’une pièce rectangulaire (ou polyédrique) comme une source
impulsionnelle de type Dirac, obtenue à partir de critères géométriques
simples. Quelques travaux récents étudient l’estimation de la forme
d’une pièce tridimensionnelle en exploitant les temps d’arrivée des
échos dans l’enregistrement de la réponse impulsionnelle de salle.
Différentes limitations apparaissent dans ce type de méthode, notamment
la localisation temporelle des échos et leur labellisation. La méthode
présentée dans cet exposé permet la reconstruction des positions 3D des
sources images sans labellisation préalable des réflexions. Le problème
inverse est posé comme un problème convexe en dimension infinie de
reconstruction parcimonieuse en 3D des sources images, l’opérateur
linéaire d’observation à inverser faisant intervenir la solution de
l’équation des ondes avec un terme source mesure. Les dimensions d’une
pièce rectangulaire peuvent ensuite être estimées précisément à l’aide
du nuage de sources images ainsi reconstruites. L’exposé se conclura par
la présentation d’une approche alternative en cours de développement
basée sur l’optimisation de forme et la méthode des solutions
fondamentales, qui devrait permettre de dépasser le cas des pièces
rectangulaires.
Observateurs adaptatifs pour l'équation des ondes et leurs discrétisations associées : formulation et analyse
23 janvier 2024 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Tiphaine Delaunay (Inria Paris)
Résumé :
Numerical solution of Poisson partial differential equation in high dimension using two-layer neural networks
16 janvier 2024 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Mathias Dus
Résumé :
The aim of this article is to analyze numerical schemes using two-layer neural networks with infinite width for the resolution of the high-dimensional Poisson partial differential equation (PDE) with Neumann boundary condition. Using Barron’s representation of the solution with a probability measure defined on the set of parameter values, the
energy is minimized thanks to a gradient curve dynamic on the 2-Wasserstein space of the set of parameter values defining the neural network. Inspired by the work from Bach and Chizat, we prove that if the gradient curve converges, then the represented function is the solution of the elliptic equation considered. In contrast to previous works, the activation function we use here is not assumed to be homogeneous to obtain global convergence of the flow. Numerical experiments are given to show the potential of the method.
Maximisation des valeurs propres du Laplacien avec condition de Neumann
9 janvier 2024 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Eloi Martinet (Université Savoie Mont Blanc)
Résumé :
On s’intéresse au problème d’optimisation de formes consistant à maximiser les valeurs propres du Laplacien avec conditions de Neumann homogènes. Ces valeurs propres interviennent notamment dans des problèmes acoustiques ou thermiques et sont en particulier liées à la « hot spot conjecture ». Contrairement aux valeurs propres de Dirichlet, celles associées au problème de Neumann sont de nature plutôt instable, ce qui rend le problème d’optimisation difficile. On verra comment certaines explorations numériques du problème pour des domaines du plan et de la sphère ont permis de mettre en évidence certaines propriétés des optima.
En fin de présentation, on fera une petite digression sur la capacité d’un réseau de neurones à apprendre les valeurs propres d’un opérateur.
Limites par explosion et propriété d’uniforme concentration pour les minimiseurs de Griffith
19 décembre 2023 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Camille Labourie (Université Paris-Saclay)
Résumé :
Stabilité des fronts d'invasion
12 décembre 2023 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Louis Garénaux (KIT)
Résumé :
Les fronts monostables sont des ondes propagées qui apparaissent dans
des contextes biologiques. Dans cette présentation on présentera les
mécanismes (instabilité VS transport et poids) qui garantissent la
stabilité de ces objets, et donc leur observabilité sur des grandes
périodes de temps. Les arguments seront valables à la fois pour des
équations paraboliques (réaction-diffusion) et hyperboliques (équations
de bilan).
Optimisation de forme motivée par des questions d'aménagement urbain
5 décembre 2023 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Ilias Ftouhi (Universität Erlangen)
Résumé :
Dans cet exposé, nous présenterons la thématique de
l’optimisation de forme et certaines de ses applications dans des
problèmes réels. Nous nous concentrerons ensuite sur quelques problèmes
motivés par la question suivante : où devrions-nous placer un parc à
l’intérieur d’un quartier donné et comment devrions-nous le concevoir
afin de le rendre le plus proche (dans un sens pertinent) à tous les
habitants du quartier ? l’exposé est basé sur des travaux en
collaboration avec Zakaria Fattah (ENSAM, Maroc) et Enrique Zuazua (FAU,
Allemagne).
Une méthode numérique basée sur le contrôle optimal pour les problèmes de transmission scalaires avec coefficients qui changent de signe.
28 novembre 2023 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Mahran Rihani (Ecole Polytechnique)
Résumé :
Dans cet exposé, je présenterai une nouvelle méthode numérique pour résoudre le problème de transmission scalaire avec des coefficients à changement de signe. En électromagnétisme, un tel problème de transmission peut se poser si le domaine d’intérêt consiste en un matériau diélectrique classique et un métal ou un métamatériau, avec, par exemple, une permittivité électrique qui est strictement négative dans le métal ou le métamatériau. La méthode est basée sur une reformulation du problème en un problème de contrôle optimal. Contrairement à d’autres approches existantes, la convergence de cette méthode est prouvée sans aucune condition restrictive sur le maillage utilisé ou sur la régularité de la solution du problème. Ces résultats sont illustrés par quelques expériences numériques.
T-coercivity: a practical tool for the study of variational formulations
21 novembre 2023 10:45-11:45 - Salle DöblinOratrice ou orateur : Patrick Ciarlet (ENSTA)
Résumé :
Attention, le séminaire aura lieu exceptionnellement en salle Döblin.
Stabilization of a dissipative cat-qubit
14 novembre 2023 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Rémi Robin (Mines Paris)
Résumé :
A dynamically protected cat-qubit is an open quantum system that stabilizes a two-dimensional subspace (called code space) of a quantum harmonic oscillator and shows very promising robustness to noise. Experimental realizations of cat-qubits rely on reservoir engineering, a method of coupling a high-quality cavity with a dissipative cavity. In this talk, after an introduction to the mathematics of open quantum systems, we will present a new generalized LaSalle invariance principle to prove the long-time convergence of a cat-qubit to the code space.
Mouvement par courbure moyenne, réseaux de neurones et applications
7 novembre 2023 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Elie Bretin (INSA Lyon)
Résumé :
De nombreuses applications en traitement d’images (débruitage, segmentation), en science des données (lissage de nuages de points, associations de formes), en sciences des matériaux (évolution des grains dans les alliages, croissance des cristaux) ou en biologie (modélisation cellulaire) nécessitent l’approximation de l’évolution d’interfaces géométriques telles que l’emblématique mouvement par courbure moyenne.
Dans ce contexte, la méthode des champs de phase est un outil particulièrement efficace pour approcher
l’évolution des surfaces orientées, mais les choses se révèlent beaucoup plus difficiles pour les surfaces non orientées.
Dans cet exposé, nous expliquerons comment approcher de telles évolutions en entraînant des réseaux de neurones dont les structures dérivent des schémas classiques de discrétisation de l’équation d’Allen Cahn.
Des applications numériques aux problèmes de Steiner et de Plateau seront aussi proposées.
Can quasi-static evolutions of perfect plasticity be derived from brittle damage evolutions?
24 octobre 2023 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Elise Bonhomme (Université Paris-Saclay)
Résumé :
This talk addresses the question of the interplay between relaxation and irreversibility through
evolution processes in damage mechanics, by inquiring the following question: can the quasi-static
evolution of an elastic material undergoing a process of plastic deformation be derived as the limit
model of a sequence of quasi-static brittle damage evolutions?
This question is motivated by the static analysis led in [1], where the authors have shown
how the brittle damage model introduced by Francfort and Marigo (see [4]) can lead to a model
of (Hencky) perfect plasticity. Problems of damage mechanics being rather described through
evolution processes, it is natural to extend this analysis to quasi-static evolutions, where the inertia
is neglected. We consider the case where the medium is subjected to time-dependent boundary
conditions, in the one-dimensional setting. The idea is to combine the scaling law introduced in [1]
with the quasi-static brittle damage evolution introduced in [3] by Francfort and Garroni, and try
to understand how the irreversibility of the damage process will be expressed in the limit evolution.
Surprisingly, the interplay between relaxation and irreversibility of the damage is not stable
through time evolutions. Indeed, depending on the choice of the prescribed Dirichlet boundary
condition, the effective quasi-static damage evolution obtained may not be of perfect plasticity
type.
References:
[1] J.-F. Babadjian, F. Iurlano, F. Rindler: Concentration versus oscillation effects in brittle damage, Comm.
Pure Appl. Math. 74 (2021) 1803–1854.
[2] G. Dal Maso, A. DeSimone, M. G. Mora: Quasistatic evolution problems for linearly elastic-perfectly plastic
materials, Arch. Ration. Mech. Anal. 180 (2006) no. 2, 237–291.
[3] G. A. Francfort, A. Garroni: A Variational View of Partial Brittle Damage Evolution, Arch. Rational
Mech. Anal 182 (2006) 125–152.
[4] G. A. Francfort, J.-J. Marigo: Revisiting brittle fracture as an energy minimization problem, J. Mech.
Phys. Solids 46 (1998) 1319–1342.
Approximation des solutions d’un système d’edp semi-classiques en présence de croisements réguliers
17 octobre 2023 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Clotilde Fermanian
Résumé :
Dans cet exposé, on discutera un résultat récent obtenu en collaboration avec Caroline Lasser et Didier Robert.
Il s’agit de la construction d’approximations du propagateur associé à un opérateur de Schrödinger semi-classique matriciel.
La méthode utilisée repose sur l’utilisation de paquets d’onde gaussiens et notre résultat justifie les méthodes numériques de « multiple spawning » utilisées en chimie quantique.
Le comportement de la fonction propre associée à la première valeur propre du Laplacien-Dirichlet
10 octobre 2023 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Saïd Bénachour (IECL)
Résumé :
A model of superfluidity with temperature effects
26 septembre 2023 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Reika Fukuizumi (Université de Waseda)
Résumé :
Existence of solutions to the fractional Vlasov-Poisson-Fokker-Planck equation via commutator estimates
27 juin 2023 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Ivan Moyano (Nice)
Résumé :
We study the existence of solutions to a kinetic system
describing the dynamics of a large number of particles undergoing the
effect of a self-generated field (electrical or gravitational) and the
action of random jumps in velocity according to a $2\sigma$-stable
Poisson process. The evolution of the corresponding system can be seen
as a fractional version of the classical Valsov-Poisson-Fokker-Planck
systems in which the dissipating part is described by a fractional
Laplacian. We address the question of local existence in time of mild
solutions for this system in all natural ranges $0 < \sigma < 1$ thanks
to the use of commutator estimates à la Kato-Ponce. We also investigate
the possibility of propagating the lifespan of these solutions in the
range $\frac{1}{2} < \sigma < 1$ and get global solutions in a natural
weighted $L^2$ space, which is possible thanks to the use of fundamental
solutions combined with an approach due to Bouchut (\emph{J. Funct.
Analysis} Vol 111(1) 1993 pp 239-258.).
Méthodes parallèles en temps pour des problèmes de contrôle
20 juin 2023 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : Félix Kwok (Université de Laval)
Résumé :
Lorsque nous résolvons numériquement un problème de contrôle optimal gouverné par des équations aux dérivées partielles instationnaires, les conditions d’optimalité donnent des systèmes avec un grand nombre d’équations fortement couplées. Il est donc souhaitable de résoudre de tels systèmes en parallèle sur plusieurs processeurs. L’approche classique consiste à décomposer le domaine spatial en plusieurs sous-domaines pour obtenir des problèmes plus petits à résoudre en parallèle. Une autre possibilité intéressante est de décomposer le domaine temporel pour obtenir des méthodes « parallèles en temps ». Dans cet exposé, je présenterai deux méthodes de résolution basées sur une telle décomposition : la première utilise uniquement des communications entre sous-domaines voisins, alors que la deuxième nécessite la résolution d’un système global, mais de taille réduite. Je démontrerai la convergence des deux méthodes lorsque l’EDP est de type diffusif. Je présenterai enfin quelques exemples numériques pour montrer le comportement de ces algorithmes en fonction du nombre de sous-domaines.
Robust energy a posteriori estimates for nonlinear elliptic problems
13 juin 2023 10:45-11:45 - Salle de conférences NancyOratrice ou orateur : André Harnist (Inria Paris)
Résumé :
In this talk, we present a posteriori estimates for finite element approximations of nonlinear elliptic problems satisfying strong-monotonicity and Lipschitz-continuity properties. These estimates include, and build on, any iterative linearization method that satisfies a few clearly identified assumptions; this encompasses the Picard, Newton, and Zarantonello linearizations. The estimates give a guaranteed upper bound on an augmented energy difference (reliability with constant one), as well as a lower bound (efficiency up to a generic constant). We prove that for the Zarantonello linearization, this generic constant only depends on the space dimension, the mesh shape regularity, and possibly the approximation polynomial degree in four or more space dimensions, making the estimates robust with respect to the strength of the nonlinearity. For the other linearizations, there is only a computable dependence on the local variation of the linearization operators. We also derive similar estimates for the energy difference. Numerical experiments illustrate and validate the theoretical results, for both smooth and singular solutions.