Existence globale pour une classe de systèmes de réaction-diffusion avec des données initiales peu régulières

Date/heure
13 octobre 2020
10:45 - 11:45

Oratrice ou orateur
El Haj Laamri

Catégorie d'évènement
Séminaire Équations aux Derivées Partielles et Applications (Nancy)


Résumé

Durant les 40 dernières années, des efforts considérables ont été consacrées à  l’étude des systèmes de réaction-diffusion avec des données initiales bornées ou de carré intégrable, et avec des non-linéarités au plus quadratiques. En revanche, on en sait relativement peu dans le cas o๠les données initiales sont de faible régularité et les non-linéarités sont à  croissance super-quadratique. Dans cet exposé, nous présentons une nouvelle estimation a priori avec des données initiales dans L1 qui étend l’estimation a priori L2 de Michel Pierre. Ensuite, nous expliquons comment cette estimation a priori L1 nous permet : de simplifier la preuve de certains résultats récents ; d’établir de nouveaux résultats d’existence pour des systèmes o๠les non-linéarités sont super-quadratiques. L’exposé repose sur un travail récent avec Benoit Perthame et sur un papier avec Michel Pierre.