Feuilletages lisses sur variétés homogènes compactes kaehleriennes

Date/heure
4 mai 2015
14:00 - 15:00

Oratrice ou orateur
Federico Lo Bianco

Catégorie d'évènement
Séminaire de géométrie complexe


Résumé

Codimension 1 (possibly singular) foliations on complex tori have been classified in
a work by Brunella, whereas Ghys studied codimension 1 smooth foliations on homogeneous
varieties, and managed to give a complete classification in the Kähler case. In a
joint work with Pereira we managed to find a generalization of Ghys’s results for smooth
foliations of arbitrary codimension on homogeneous compact Kähler manifolds.
The first result is a (rough) general classification theorem for such foliations; as an immediate
corollary, we prove that in the case of homogeneous compact rational Kähler manifolds
all smooth foliations are in fact locally trivial fibrations. By a more refined analysis of the
sheaves defining the foliation, we also prove that either there exists a non-trivial invariant
subvariety or the foliation is essentially given by a linear foliation on a torus.