Date/heure
15 novembre 2018
10:45 - 11:45
Oratrice ou orateur
Arnaud Guyader
Catégorie d'évènement Séminaire Probabilités et Statistique
Résumé
The distribution of a Markov process with killing, conditioned to be
still alive at a given time, can be approximated by a Fleming-Viot
particle system. In such a system, each particle is simulated
independently according to the law of the underlying Markov process, and
branches onto another particle at each killing time. The purpose of this
talk is to present a central limit theorem for the law of the
Fleming-Viot particle system at a given time in the large population
limit. We will illustrate this result on an application in molecular
dynamics. This is a joint work with Frédéric Cérou, Bernard Delyon and
Mathias Rousset.