Existence and boundedness of solutions to singular anisotropic elliptic equations

Date/heure
16 avril 2024
10:45 - 11:45

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Florica Cirstea (Université de Sydney)

Catégorie d'évènement
Séminaire Équations aux Derivées Partielles et Applications (Nancy)


Résumé
In this talk, we present new results on the existence and uniform boundedness of solutions for a general class of Dirichlet anisotropic elliptic problems
of the form
Δpu+Φ0(u,u)=Ψ(u,u)+fin Ω,u=0on Ω,
where Ω is a bounded domain in RN (N2), Δpu=j=1Nj(|ju|pj2ju) and
Φ0(u,u)=(a0+j=1Naj|ju|pj)|u|m2u,
with a0>0,
m,pj>1,   aj0 for 1jN and N/p=k=1N(1/pk)>1. We assume that fLr(Ω) with r>N/p. The feature of this study  is the inclusion of a possibly singular gradient-dependent term Ψ(u,u)=j=1N|u|θj2u|ju|qj, where θj>0 and 0qj<pj for 1jN.
This is joint work with Barbara Brandolini (Università degli Studi di Palermo).