Formules de Gysin universelles ponctuelles et positivité de certaines formes caractéristiques

Date/heure
14 juin 2021
15:30 - 16:30

Oratrice ou orateur
Simone Diverio

Catégorie d'évènement
Séminaire de géométrie complexe


Résumé
D’après une conjecture de Griffiths, lorsque la courbure d’un fibre vectoriel hermitien est positive au sens de Griffiths les formes caractéristiques obtenues en calculant les polynômes de Schur en les formes de Chern du fibré devraient être positives. Il s’agit d’une version (antécédente) hermitienne et ponctuelle du Théorème de Fulton-Lazasrfeld.
Nous allons expliquer un résultat récent démontré en collaboration avec mon thésard F. Fagioli, qui donne une réponse (affirmative) partielle à cette conjecture, et nous allons mettre ce résultat en perspective avec les autres avancés qu’il y a eu dans ces dernières années (D. Guler, P. Li, S. Finski, etc…).
Ce résultat est obtenu comme conséquence d’une formule universelle et ponctuelle de push-forward pour la courbure des fibrés en droites tautologiques sur les fibrés en drapeaux.