Groupes fondamentaux des variétés projectives et conjecture de Shafarevich

Date/heure
11 mars 2019
15:30 - 16:30

Oratrice ou orateur
Jérémy Daniel

Catégorie d'évènement
Séminaire de géométrie complexe


Résumé

En 1974, Igor Shafarevich demande si les revêtements universels des variétés projectives sont toujours des variétés holomorphiquement convexes. Une réponse positive est donnée par Philippe Eyssidieux en 2004, dans le cas o๠le groupe fondamental de la variété admet une représentation linéaire fidèle. L’ingrédient principal de sa preuve est la théorie de Hodge non-abélienne qui établit une correspondance entre représentations du groupe fondamental et fibrés de Higgs sur la variété.
Depuis mes travaux de thèse, on dispose d’applications de périodes généralisées pour comprendre différemment cette correspondance. J’expliquerai ce que sont ces applications et comment on les utilise – dans un travail en cours avec Yohan Brunebarbe – pour étendre la preuve d’Eyssidieux à  des variétés quasi-projectives.