Systems of FBSDEs driven by Brownian Motion and Numerical Simulation of Fluid Dynamics

Date/heure
14 mars 2024
09:15 - 10:15

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Hernán A. Mardones González (Universidad de la Frontera, Chile)

Catégorie d'évènement
Séminaire Probabilités et Statistique


Résumé

The systems of forward-backward stochastic differential equations driven by Brownian motion (FBSDEs for short) help us to model diffusion processes related to phenomena that involve environment perturbations. The drift coefficients constitute the descriptive part of a non-random ambient, while the Wiener processes permit us to describe the random perturbations involved into the dynamics through the diffusion terms. The systems of FBSDEs motion are linked to the nonlinear partial differential equations (PDEs) through the Feyman-Kac formulae. Therefore, the deterministic solutions can be obtained by probabilistic representations involving the stochastic processes that solve the FBSDEs.

During this talk, we deal with the numerical simulation of systems of stochastic particles ruled by FBSDEs associated with nonlinear PDEs appearing in fluid dynamics. To make this, we discretize locally in time the stochastic equations, and then we consider integration schemes of Euler-Maruyama type, together with the optimal quantization of the involved Wiener increments as an alternative to the Monte-Carlo simulation. Then we approximate the related conditional expectations over each temporal-spatial node of a computational domain with uniform discretization steps in time and space. Numerical results are presented to the case of analytic spatially-periodic exact solutions of the incompressible Navier-Stokes equations, in particular, a two-dimensional Taylor-Green vortex and three-dimensional Beltrami flows, for example an Arnold-Beltrami-Childress flow. The simulation algorithms follow from a completely probabilistic approach.