Holomorphic Euler characteristic and big fundamental groups

Date/heure
16 septembre 2024
14:00 - 15:00

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Ya Deng

Catégorie d'évènement
Séminaire de géométrie complexe


Résumé

In 1995 Kollár conjectured that the Euler characteristic $\chi(K_X)\geq 0$ for any complex projective manifold $X$ having big fundamental groups. In a recent joint work with Botong Wang we prove Kollár’s conjecture if $\pi_1(X)$ is linear. I will explain the proof in the talk, which is based on $L^2$-vanishing theorems, together with techniques in the linear Shafarevich conjecture and geometry of mixed period maps.