Date/heure
5 juin 2018
10:45 - 11:45
Oratrice ou orateur
Charles Dapogny
Catégorie d'évènement Séminaire Équations aux Derivées Partielles et Applications (Nancy)
Résumé
Ce travail, en collaboration avec E. Bonnetier et F. Triki s’intéresse au spectre de l’opérateur de Poincaré-Neumann. Cet opérateur intégral intervient de manière récurrente dans l’étude de problèmes de conductivité mettant en jeu plusieurs phases, et son spectre gouverne certains phénomènes physiques découverts récemment, tels que celui de « résonances plasmoniques ». Le cadre d’étude de ce travail met en jeu une distribution périodique de petites inclusions de taille caractéristique $varepsilon$. En combinant des techniques appartenant à la théorie de l’homogénéisation périodique et à la théorie du potentiel, nous prouvons que le spectre de l’opérateur de Poincaré-Neumann associé à cette collection d’inclusions est composé de deux valeurs propres 0 et 1 (dont les sous-espaces propres sont ‘triviaux’), ainsi que d’une partie qui est uniformément éloignée de 0 et 1 lorsque la taille des inclusions tend vers 0. Cette partie non triviale s’écrit comme l’union d’un `spectre de Bloch’ – composé de bandes décrivant les résonances collectives des cellules – ainsi que d’un `spectre de couche limite’, associé aux fonctions propres qui conservent une fraction non négligeable de leur énergie près de la frontière du domaine macroscopique. Ces résultats donnent un éclairage nouveau au problème de l’homogénéisation du potentiel électrique engendré par une source donnée dans un milieu diélectrique ponctué de petites inclusions distribuées périodiquement, remplies d’une conductivité arbitraire (y compris négative).