Hyperbolic Campana’s isotriviality conjecture.

Date/heure
7 octobre 2019
15:30 - 16:30

Oratrice ou orateur
Ya Deng

Catégorie d'évènement
Séminaire de géométrie complexe


Résumé

In 2008 Campana conjectured that a smooth projective family of canonically polarized manifolds over a special manifold (being opposed to general type manifolds) is isotrivial, i.e. any two fibers are isomorphic. This conjecture was proven by Taji in 2016. In this talk I will present a hyperbolic version of Campana’s isotriviality conjecture: a smooth family of canonically polarized or polarized Calabi-Yau manifolds over a hyperbolically special complex manifold (i.e. its Kobayashi pseudo distance vanishes identically) is necessarily isotrivial. This result is indeed inspired by another conjecture of Campana: a complex manifold is special if and only if it is hyperbolically special, and thus provides some (indirect) evidence to this conjecture.