Date/heure
10 juin 2021
09:15 - 10:15
Oratrice ou orateur
Mathilde Bouvel
Catégorie d'évènement Groupe de travail Probabilités et Statistique
Résumé
La combinatoire analytique est une théorie développée par Philippe Flajolet et son école, dont l’idée centrale est d’obtenir des propriétés de familles d’objets discrets en étudiant leurs séries génératrices vues comme des fonctions d’une variable complexe. Il s’agit le plus souvent d’obtenir l’énumération asymptotique de la famille considérée. En considérant des séries génératrices bivariées, on peut aussi obtenir des informations sur le comportement limite de statistiques sur les objets considérés.
Dans cet exposé, j’essaierai de faire un panorama des théorèmes principaux de la combinatoire analytique, illustré de quelques exemples, et en donnant quelques éléments de preuve. Une partie de l’exposé est préparatoire à la séance 2, où l’on utilisera l’énumération asymptotique d’une certaine famille d’arbres dans la preuve de la limite en graphon des cographes.