Date/heure
12 décembre 2019
09:15 - 10:15
Oratrice ou orateur
Edouard STRICKLER
Catégorie d'évènement Groupe de travail Probabilités et Statistique
Résumé
L’objectif de ces deux séances est de présenter la théorie de la persistance stochastique et les résultats récemment obtenus par Michel Benaïm (preprint 2018).
On s’intéresse à un processus de Markov (type EDS ou PDMP) modélisant une population et laissant invariant un ensemble (typiquement, un point, ou une face de l’orthant positif) qui représente l’extinction d’une ou plusieurs espèces.
L’hypothèse d’invariance implique que le processus n’est pas absorbé en temps fini par l’ensemble d’extinction. Les outils développés par Michel Benaïm permettent d’étudier le processus au voisinage de l’ensemble d’extinction, et ainsi d’obtenir des conditions suffisantes pour l’extinction (convergence vers l’ensemble invariant) ou la persistance (concentration des trajectoires à une certaine distance de l’ensemble d’extinction). L’hypothèse principale est l’existence d’une fonction de type Lyapunov, qui permet de contrôler le processus au voisinage du bord, et les résultats se lisent sur le signe d’exposants de Lyapunov liés à cette fonction.
Dans la partie 1, nous verrons les définitions et les principaux résultats, ainsi que quelques exemples d’application.
Dans la partie 2, nous verrons les idées de preuves des principaux résultats et d’autres exemples.