Date/heure
27 mars 2025
09:15 - 10:15
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Xavier Goaoc
Catégorie d'évènement
Groupe de travail Probabilités et Statistique
Résumé
Un modèle classique de polytope aléatoire proposé par Renyi et Sulanke dans les années 60 consiste à fixer un corps convexe K de R^d, à y choisir n points aléatoires indépendants et uniformément distribués, et à en prendre l’enveloppe convexe K(n). L’asymptotique, pour d fixé et n tendant vers l’infini, du volume de K(n) a été reliée à l’analyse des corps flottants de K par Bárány et Larman dans les années 80. Certaines idées derrière ce lien ont été généralisées dans le « théorème de l’epsilon-net » prouvé par Haussler et Welzl au début des années 90.
Je donnerai une introduction à ces notions, avec l’idée d’aborder lors d’une éventuelle seconde séance, un travail commun avec Imre Bárány, Matthieu Fradelizi, Alfredo Hubard et Günter Rote sur la généralisation du lien polytope aléatoire/corps flottant au cas où la mesure uniforme sur K est remplacée par une mesure plus générale (https://doi.org/10.5802/ahl.44).
Première de deux séances par le même orateur. La deuxième séance, qui devait avoir lieu la semaine prochaine, est anticipé à une date de la même semaine: possiblement le mercredi 2 avril. On fixera un creneaux pendant ce premier groupe de travail.