K-means corrigé, optimalité statistique et optimisation convexe

Date/heure
6 novembre 2018
14:00 - 15:00

Oratrice ou orateur
Martin Royer

Catégorie d'évènement
Séminaire des doctorants


Résumé

On va évoquer le problème du partitionnement (« clustering ») d’un ensemble d’entités en K groupes avec un modèle statistique : peut-on discerner des groupes dans ces entités (par exemple des familles de gènes ou des régions du cerveau) de façon optimale, non-asymptotique, en grande dimension ? En étudiant l’estimateur classique des K-moyennes, on donne des éléments de réponse grâce au lien qu’il entretient avec l’optimisation convexe, ce qui permet aussi d’éclairer notre compréhension d’autres estimateurs comme les estimateurs spectraux.

Quelques références :
– Approximating K-means-type Clustering via Semidefinite Programming, Jiming Peng, Yu Wei, 2007
– PECOK: a convex optimization approach to variable clustering, F. Bunea, C. Giraud, M. R. and N. Verzelen, 2016