Date/heure
6 mars 2025
09:15 - 10:15
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Khaydar Nurligareev (Université Paris 6)
Catégorie d'évènement
Séminaire Probabilités et Statistique
Résumé
De nombreuses structures combinatoires admettent, au sens large, une notion d’irréductibilité : les graphes peuvent être connexes, les permutations indécomposables, les polynômes irréductibles, etc. Nous nous intéressons à la probabilité qu’un tel objet pris au hasard soit irréductible, lorsque sa taille tend vers l’infini. Dans cet exposé, nous discutons de quelques méthodes qui nous permettent d’obtenir les asymptotiques pour cette probabilité de manière commune. Nous montrons que les coefficients apparaissant dans ces asymptotiques sont entiers et qu’ils peuvent être interprétés comme des suites de comptage d’autres classes combinatoires “ dérivées ”. De plus, nous obtenons certaines probabilités asymptotiques qu’un objet combinatoire aléatoire ait un nombre donné de composantes irréductibles. Nous appliquons notre approche aux graphes connexes, aux graphes orientés fortement connexes, aux tournois irréductibles, aux surfaces à petits carreaux, aux permutations indécomposables, aux couplages parfaits indécomposables, aux cartes combinatoires, etc. Enfin, à l’aide de la théorie des espèces, nous traitons également le modèle G(n,p) de Erdős–Rényi.
Cet exposé est basé sur les travaux en commun avec Thierry Monteil et Sergey Dovgal.