Date/heure
24 septembre 2018
15:30 - 16:30
Oratrice ou orateur
Ya Deng
Catégorie d'évènement Séminaire de géométrie complexe
Résumé
In 1962 Shafarevich conjectured that the base quasi-projective curve of any smooth, non-isotrivial family of projective curves with genus >1 is hyperbolic, which was proved by Parshin and Arakelov. The higher dimensional Shafarevich hyperbolicity conjecture (SHC) can be formulated as follows: let Y be the quasi-projective base of any family of canonically polarized manifolds whose induced moduli map is quasi-finite. Then Y is of log general type (algebraic version) , and Y is Kobayashi hyperbolic (analytic version). The algebraic SHC was proved by Campana-Păun in 2015, combining previous work by Viehweg-Zuo. The analytic SHC was first proved by Viehweg-Zuo in 2002 for Brody hyperbolicity, and later by To-Yeung in 2014 for Kobayashi hyperbolicity. In this talk, I will present my recent work (jointly with Abramovich) on the extension of the aforementioned work by To-Yeung, to the moduli spaces of minimal projective manifolds.