Maxima of a random model of the Riemann zeta function on longer intervals (and branching random walks)

Date/heure
1 février 2024
10:45 - 11:45

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Lisa Hartung

Catégorie d'évènement
Séminaire Probabilités et Statistique


Résumé
We study the maximum of a random model for the Riemann zeta function (on the critical line at height T) on the interval $[-(\log T)^\theta,(\log T)^\theta]$, where $ \theta= = (\log \log T)^{-a}$, with $0<a<1$.  We obtain the leading order as well as the logarithmic correction of the maximum.
As it turns out, a good toy model is a collection of independent BRWs, where the number of independent copies depends on $\theta$. In this talk I will try to motivate our results by mainly focusing on this toy model. The talk is based on joint work in progress with L.-P. Arguin and G. Dubach.

(Séminaire commun avec l’équipe ATN.)