Manin’s conjecture for singular cubic hypersurfaces

Date/heure
20 janvier 2022
14:00 - 15:00

Lieu
Salle Döblin

Oratrice ou orateur
Wen Tingting (Paris 13)

Catégorie d'évènement
Séminaire de Théorie des Nombres de Nancy-Metz


Résumé
Let SQ denote the cubic hypersurface x3=Q(y1,,ym)z,
where Q is a positive definite quadratic form in m variables with integer coefficients.
This SQ ranges over a class of singular cubic hypersurfaces as Q varies.
For SQ, we prove that Manin’s conjecture is true if Q is locally determined, and we give an explicit asymptotic formula with a power saving error term; we also show in general that Manin’s conjecture is true up to a leading constant if m6 is even.