Date/heure
20 janvier 2022
14:00 - 15:00
Lieu
Salle Döblin
Oratrice ou orateur
Wen Tingting (Paris 13)
Catégorie d'évènement Séminaire de Théorie des Nombres de Nancy-Metz
Résumé
Let $S_Q$ denote the cubic hypersurface $x^3= Q(y_1, \ldots , y_m)z$,
where $Q$ is a positive definite quadratic form in $m$ variables with integer coefficients.
This $S_Q$ ranges over a class of singular cubic hypersurfaces as $Q$ varies.
For $S_Q$, we prove that Manin’s conjecture is true if $Q$ is locally determined, and we give an explicit asymptotic formula with a power saving error term; we also show in general that Manin’s conjecture is true up to a leading constant if $m \geq 6$ is even.