Date/heure
3 mars 2022
10:45 - 11:45
Lieu
Lien Teams
Oratrice ou orateur
Mazyar Ghani Varzaneh (Technische Universität Berlin)
Catégorie d'évènement Séminaire Probabilités et Statistique
Résumé
This talk aims to incorporate two subjects for developing a framework for studying the long-time behavior solution of singular delay equations. Singular delay equations fail to induce the flow property. Accordingly, for a long time, many people have believed it is not possible to apply the idea of random dynamical systems to this family of equations.
In this talk, we claim, is possible. The main trick is to regard the solution in the language of the Rough path and then construct the flow property in a bundle-like family of Banach spaces. The main challenge here is to prove the Multiplicative Ergodic Throem in this new framework. After proving this crucial theorem, we can generate the Lyapunov exponents. These exponents can be regarded as a generalization of eigenvalues. We then apply these theorems to prove the invariant manifolds in our setting. The main tools here are the rough path theory and random dynamical systems.
This talk is based on my doctoral thesis. I recently have defended my thesis in February.