Date/heure
15 octobre 2020
10:45 - 11:45
Oratrice ou orateur
Pierre Monmarché
Catégorie d'évènement Séminaire Probabilités et Statistique
Résumé
On considère un système de N neurones, dont le potentiel de membrane évolue selon une dynamique de type interaction champ moyen. Plus précisément, pour chaque neurone, ce potentiel décroît à taux constant, et d’autre part est mis à zéro lorsque le neurone se décharge (émet un spike), ce qui entraîne également une augmentation du potentiel de tous les autres neurones. Les spike surviennent à des temps aléatoires, à un taux lamba(u) qui dépend du potentiel de membrane u. Quand lambda(u) est nul en 0 et dérivable alors, quelque soit N, le système s’arrête presque sà»rement en temps fini, c’est-à -dire qu’il n’y aura qu’un nombre fini de spike, suivi d’une décroissance déterministe du système vers 0. On verra que, sous certaine condition, le système est néanmoins métastable, au sens o๠les points suivants sont satisfaits : 1) le système non-linéaire limite (N->infini) converge vers un unique équilibre non nul ; 2) le temps d’extinction d’un système fini de N neurones est exponentiellement grand en fonction de N ; 3) le potentiel moyen du système s’approche rapidement d’une valeur positive constante, et les temps de sortie de voisinages de cette valeur convergent (quand N->infini) vers la loi exponentielle (caractère sans mémoire, imprévisible de ces déviations du comportement limite). Les démonstrations reposent sur des méthodes de couplage.