Méthodes numériques d’ordre uniforme pour des problèmes d’évolution hautement oscillants.

Date/heure
10 octobre 2017
10:45 - 11:45

Oratrice ou orateur
Mohammed Lemou

Catégorie d'évènement
Séminaire Équations aux Derivées Partielles et Applications (Nancy)


Résumé

Nous présentons deux approches différentes pour construire des méthodes numériques pour les problèmes hautement oscillants, dont la précision est uniforme par rapport à  la fréquence d’oscillation. On parle dans ce cas de schémas UA (uniformly accurate). Une première méthode UA consiste à  séparer les variables rapide et lente, en rajoutant de façon adéquate une variable supplémentaire au modèle. Une deuxième méthode UA est basés sur une décomposition micro-macro qui reformule le problème en une équation moyennée à  différents ordres en la fréquence, couplée à  une équation micro satisfaite par le reste. Les propriétés de régularité uniforme par rapport à  la fréquence dont jouissent ces deux reformulations, permettent l’utilisation des méthodes numériques usuelles avec un ordre de précision indépendant de la fréquence des oscillations. Des applications en théorie cinétique (Vlasov avec Champ magnétique fort) et en mécanique quantique (Klein-Gordon et limite non-relativiste) seront présentées.