Modélisation macroscopique de trafic piéton dans le contexte d’une évacuation de salle

Date/heure
26 février 2019
10:45 - 11:45

Oratrice ou orateur
Ulrich Razafison

Catégorie d'évènement
Séminaire Équations aux Derivées Partielles et Applications (Nancy)


Résumé

Dans cet exposé, nous nous placerons dans le cadre du trafic piéton et nous présenterons un modèle permettant de décrire la chute de capacité (c’est-à -dire le flux maximal de piétons par unité de temps) d’une sortie de salle lors d’une évacuation. Le modèle repose sur une loi de conservation et la capacité de la sortie est décrite par une contrainte sur le flux. Nous supposons que cette contrainte dépend de la solution du modèle elle-même, de façon non locale en espace. La chute de capacité se produit pour les hautes densités de piétons exprimant ainsi la congestion de la sortie. Par des simulations numériques, nous montrerons que le modèle est capable de reproduire deux effets paradoxales liés à  la chute de capacité et qui ont déjà  été observés et reproduits expérimentalement : l’effet  »Faster-Is-Slower » qui stipule qu’une augmentation de la vitesse des piétons peut entraîner une augmentation du temps d’évacuation, et une variante du « paradoxe de Braess » qui indique que placer un obstacle avant la sortie peut faire diminuer la pression des piétons sur la sortie et entraîner une réduction du temps d’évacuation. Nous présenterons également des améliorations du modèle initial. Ces travaux sont en collaboration avec Boris Andreianov, Carlotta Donadello et Massimiliano Rosini.