9 avril 2013 @ 16:30 – 17:30 – Dominique Cerveau Ce groupe intervient dans l’étude qualitative des équations différentielles ordinaires. Nous decrirons à conjugaison près quelques éléments de ce groupe et nous intéresserons à sa struc- ture algébrique (sous groupes nilpotents, résolubles ou libres). Nous présenterons quelques résultats de représentations de « groupes de Poincaré » à valeurs dans ce groupe et nous […]
19 mars 2013 @ 16:30 – 17:30 – Yves Derriennic Une trajectoire du mouvement brownien est une fonction continue dont les variations sont soumises à un maximum de hasard. Un sens précis est donné à cette assertion par la construction de la mesure de Wiener fondée sur la renormalisation d’une marche aléatoire sur les entiers. Cette méthode permet une approche intuitive des propriétés […]
19 février 2013 @ 16:30 – 17:30 – Bernhard Keller Nous présenterons la définition et les premiers exemples des algèbres amassées (cluster algebras) introduites par Fomin et Zelevinsky en 2002. Nous montrerons ensuite comment les générateurs canoniques de ces algèbres peuvent s’exprimer à l’aide d’objets géométriques qui généralisent les grassmanniennes. Ces expressions ont permis de montrer une série de conjectures sur les algèbres […]
18 décembre 2012 @ 16:30 – 17:30 – Frank Pacard L’étude des surfaces à courbure moyenne constante dans l’espace euclidien de dimension 3 et l’étude des ondes stationnaires pour l’équation de Schödinger non linéaire qui sont définies dans le plan sont a priori des problèmes qui n’ont pas grand chose à voir. Pourtant, on peut construire pour ces deux problèmes de surprenantes solutions […]
20 novembre 2012 @ 16:30 – 17:30 – Patrick Joly Dans cet exposé, je présenterai les résultats d’un travail de coopération interdisciplinaire entre l’équipe POems (CNRS – ENSTA – INRIA) et l’Unité de Mécanique de l’ENSTA sur la simulation numérique d’un piano de concert à partir d’un modèle physique complet de l’instrument. Ce travail s’inscrit dans le cadre d’une collaboration à plus long […]
16 octobre 2012 @ 16:30 – 17:30 – Cédric Bonnafé L’exposé se propose de dresser un panorama des divers domaines mathématiques (théorie des invariants, topologie, géométrie, théorie de Lie…) dans lesquels les groupes de réflexions peuvent apparaître, soit comme cœur de la théorie, soit comme curiosité, soit comme pont entre plusieurs problèmes. En fin d’exposé seront abordées les questions récentes soulevées par les […]
24 avril 2012 @ 16:30 – 17:30 – Antoine Ducros À tout nombre premier [latex]p[/latex], on associe un corps dit des nombres p-adiques. Nous expliquerons la construc- tion de ces corps, et certains de leurs nombreux intérêts arithmétiques, en insistant notamment sur leurs applications à l’étude de problèmes diophantiens (équations polynomiales à coefficients dans [latex]mathbf{Q}[/latex]). Dans un second temps, nous parlerons de la […]
6 mars 2012 @ 16:30 – 17:30 – David Harari Soit [latex]f(x_1,…,x_n)[/latex] une forme quadratique non dégénérée en n variables, à coefficients entiers. On cherche des critères pour déterminer si un entier a est représenté par [latex]f[/latex]. On donnera d’abord des conditions nécessaires simples, faisant intervenir des congruences, ou dans un langage plus élaboré des nombres [latex]p[/latex]-adiques. Puis on expliquera sous quelles hypothèses […]
14 février 2012 @ 16:30 – 17:30 – Yann Brenier La théorie du transport optimal, dont l’origine remonte à Monge (1780) et Kantorovich (1942), a connu un succès grandissant, y compris en mathématiques « pures », durant les deux dernières décennies (ceci étant bien illustré par les deux volumes de C. Villani). On peut la voir comme une version « simplifiée » d’une théorie du transport optimal […]