(Annulé et reporté) T-coercivity: a practical tool for the study of variational formulations

Date/heure
31 janvier 2023
10:45 - 11:45

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Patrick Ciarlet (ENSTA)

Catégorie d'évènement
Séminaire Équations aux Derivées Partielles et Applications (Nancy)


Résumé

Variational formulations are a popular tool to analyse linear PDEs (eg. neutron
diffusion, Maxwell equations, Stokes equations …), and it also provides a
convenient basis to design numerical methods to solve them. Of paramount
importance is the inf-sup condition, designed by Ladyzhenskaya, Necas,
Babuska and Brezzi in the 1960s and 1970s. As is well-known, it provides
sharp conditions to prove well-posedness of the problem, namely existence
and uniqueness of the solution, and continuous dependence with respect to the
data. Then, to solve the approximate, or discrete, problems, there is the
(uniform) discrete inf-sup condition, to ensure existence of the approximate
solutions, and convergence of those solutions to the exact solution. Often, the
two sides of this problem (exact and approximate) are handled separately, or at
least no explicit connection is made between the two.

In this talk, I will focus on an approach that is completely equivalent to the
inf-sup condition for problems set in Hilbert spaces, the T-coercivity
approach. This approach relies on the design of an explicit operator to realize
the inf-sup condition. If the operator is carefully chosen, it can provide useful
insight for a straightforward definition of the approximation of the exact
problem. As a matter of fact, the derivation of the discrete inf-sup condition
often becomes elementary, at least when one considers conforming methods,
that is when the discrete spaces are subspaces of the exact Hilbert spaces. In
this way, both the exact and the approximate problems are considered,
analysed and solved at once.

In itself, T-coercivity is not a new theory, however it seems that some of its
strengths have been overlooked, and that, if used properly, it can be a simple,
yet powerful tool to analyse and solve linear PDEs. In particular, it provides
guidelines such as, which abstract tools and which numerical methods are the
most “natural” to analyse and solve the problem at hand. In other words, it
allows one to select simply appropriate tools in the mathematical, or
numerical, toolboxes. This claim will be illustrated on classical linear PDEs,
and for some generalizations of those models.