Date/heure
4 décembre 2018
14:00 - 15:00
Oratrice ou orateur
Mareike Lager
Catégorie d'évènement Séminaire des doctorants
Résumé
We consider a random band matrix ensemble in two and three
dimensions, in the limit of infinite volume and fixed but large band
width. For this model, we discuss rigorous results on the averaged
density of states obtained in [2] and [1]. The main steps of the proof
are a supersymmetric dual representation, a saddle point analysis and a
suitable cluster expansion. We compare the results and proofs with
respect to the dimension.
This is a joint work with M. Disertori.[1] M. Disertori and M. Lager. Density of States for Random Band
Matrices in Two Dimensions. Annales Henri Poincaré, 18(7):2367–2413, 2017.[2] M. Disertori, H. Pinson, and T. Spencer. Density of states for
random band matrices. Comm. Math. Phys., 232(1):83–124, 2002.